synchronized实现原理

synchronized有何作用?
线程安全对于并发编程是十分重要的,造成线程安全问题的原因主要有两点:
一.存在共享数据(临界资源)
二.存在多条线程共同操作共享数据
我们需要当存在多个线程共享数据时,需要保证同一时刻有且只有一个线程在操作共享数据,其他线程必须等到该线程处理完数据后再进行,这种方式叫互斥锁,即能达到互斥访问目的的锁,也就是说当一个共享数据被当前正在访问的线程加上互斥锁之后,在同一时刻,其他线程只能处于等待的状态,直到当前线程处理完毕释放锁。
关键字synchronized可以保证在同一时刻只有一个线程可以执行某个方法或者某个代码块,synchronized还可保证一个线程的变化(共享数据的变化)可以被其他线程所看到的(保证可见性,volatile功能)。
synchronized的三种应用方式
1.修饰实例方法,作用当前实例加锁,进入同步代码前要或得当前实例的锁。
2.修饰静态方法,作用当前类对象加锁,进入同步代码前要或得当前类对象的锁。
3.修饰代码块,指定加锁对象,给定对象加锁,进入同步代码块前要或得给定对象的锁。
synchronized底层语义原理
Java虚拟机中的同步基于进入和退出管程(Monitor)对象实现,无论是显式同步(有明确的monitorenter和monitorexit)还是隐式都是如此。同步方法并不是由monitorenter和monitorexit实现同步的,而是由方法调用指令读取运行时常量池中方法的 ACC_SYNCHRONIZED标志来隐式实现。
synchronized使用的锁对象是存储在Java对象头里的,jvm中采用2个字来存储对象头,其主要结构由Mark Word和Class Metadata Address组成。
Mark Word在默认情况下存储着对象的HashCode,分代年龄,锁标记位等。
这里写图片描述
其中轻量级锁和偏向锁是Java 6 对 synchronized 锁进行优化后新增加的
monitor对象存在于每个Java对象的对象头中(存储的指针的指向),synchronized锁便是通过这种方式获取锁的,也是为什么Java中任意对象可以作为锁的原因。
synchronized代码块底层原理

public class SyncCode {

   public int i;

   public void syncTask(){
       //同步代码块
       synchronized (this){
           i++;
       }
   }
}

使用javap反编译后得到字节码

 monitorenter  //进入同步方法
//..........省略其他  
 monitorexit   //退出同步方法
goto          24
//省略其他.......
 monitorexit //退出同步方法

从字节码中可知同步代码块的实现是使用monitorenter和monitorexit指令,其中monitorenter指令指向同步代码块的开始位置,monitorexit指令则指明同步代码块的结束位置,当执行monitorenter指令时,当前线程试图获得objectref(即对象锁) 所对应的 monitor 的持有权,当objectref的monitor的进入计数器为0,那线程可以成功取得monitor,并将计数器设置为1,取锁成功。如果当前线程已经拥有objectref的monitor的持有权,则可以重入这个monitor,重入时计数器的值也会加1,倘若其他线程已经拥有objectref的monitor的所有权,那当前线程将被阻塞,直到正在执行线程执行完毕,即monitorexit指令被执行,执行线程将释放monitor(锁)并设置计数器值为0,其他线程将有机会持有monitor。值得注意的是无论方法通过何种方式完成,方法中调用过的每条monitorenter指令都有执行其对应monitorexit指令,无论这个方法是正常结束还是异常结束。
synchronized方法底层原理
方法级的同步是隐式,即无需通过字节码指令来控制的,它实现在方法调用和返回操作之中。JVM可以从方法常量池中的方法表结构(method_info Structure) 中的 ACC_SYNCHRONIZED 访问标志区分一个方法是否同步方法。当方法调用时,调用指令将会 检查方法的 ACC_SYNCHRONIZED 访问标志是否被设置,如果设置了,执行线程将先持有monitor(虚拟机规范中用的是管程一词), 然后再执行方法,最后再方法完成(无论是正常完成还是非正常完成)时释放monitor。在方法执行期间,执行线程持有了monitor,其他任何线程都无法再获得同一个monitor。如果一个同步方法执行期间抛 出了异常,并且在方法内部无法处理此异常,那这个同步方法所持有的monitor将在异常抛到同步方法之外时自动释放。下面我们看看字节码层面如何实现:

public class SyncMethod {

   public int i;

   public synchronized void syncTask(){
           i++;
   }
}

synchronized修饰的方法并没有monitorenter指令和monitorexit指令,取得代之的确实是ACC_SYNCHRONIZED标识,该标识指明了该方法是一个同步方法,JVM通过该ACC_SYNCHRONIZED访问标志来辨别一个方法是否声明为同步方法,从而执行相应的同步调用。这便是synchronized锁在同步代码块和同步方法上实现的基本原理。同时我们还必须注意到的是在Java早期版本中,synchronized属于重量级锁,效率低下,因为监视器锁(monitor)是依赖于底层的操作系统的Mutex Lock来实现的,而操作系统实现线程之间的切换时需要从用户态转换到核心态,这个状态之间的转换需要相对比较长的时间,时间成本相对较高,这也是为什么早期的synchronized效率低的原因。庆幸的是在Java 6之后Java官方对从JVM层面对synchronized较大优化,所以现在的synchronized锁效率也优化得很不错了,Java 6之后,为了减少获得锁和释放锁所带来的性能消耗,引入了轻量级锁和偏向锁,接下来我们将简单了解一下Java官方在JVM层面对synchronized锁的优化。
Java虚拟机对synchronized的优化
锁的状态总共有四种,无锁状态、偏向锁、轻量级锁和重量级锁。随着锁的竞争,锁可以从偏向锁升级到轻量级锁,再升级的重量级锁,但是锁的升级是单向的,也就是说只能从低到高升级,不会出现锁的降级
偏向锁
偏向锁是Java 6之后加入的新锁,它是一种针对加锁操作的优化手段,经过研究发现,在大多数情况下,锁不仅不存在多线程竞争,而且总是由同一线程多次获得,因此为了减少同一线程获取锁(会涉及到一些CAS操作,耗时)的代价而引入偏向锁。偏向锁的核心思想是,如果一个线程获得了锁,那么锁就进入偏向模式,此时Mark Word 的结构也变为偏向锁结构,当这个线程再次请求锁时,无需再做任何同步操作,即获取锁的过程,这样就省去了大量有关锁申请的操作,从而也就提供程序的性能。所以,对于没有锁竞争的场合,偏向锁有很好的优化效果,毕竟极有可能连续多次是同一个线程申请相同的锁。但是对于锁竞争比较激烈的场合,偏向锁就失效了,因为这样场合极有可能每次申请锁的线程都是不相同的,因此这种场合下不应该使用偏向锁,否则会得不偿失,需要注意的是,偏向锁失败后,并不会立即膨胀为重量级锁,而是先升级为轻量级锁。下面我们接着了解轻量级锁。
轻量级锁
倘若偏向锁失败,虚拟机并不会立即升级为重量级锁,它还会尝试使用一种称为轻量级锁的优化手段(1.6之后加入的),此时Mark Word 的结构也变为轻量级锁的结构。轻量级锁能够提升程序性能的依据是“对绝大部分的锁,在整个同步周期内都不存在竞争”,注意这是经验数据。需要了解的是,轻量级锁所适应的场景是线程交替执行同步块的场合,如果存在同一时间访问同一锁的场合,就会导致轻量级锁膨胀为重量级锁。
自旋锁
轻量级锁失败后,虚拟机为了避免线程真实地在操作系统层面挂起,还会进行一项称为自旋锁的优化手段。这是基于在大多数情况下,线程持有锁的时间都不会太长,如果直接挂起操作系统层面的线程可能会得不偿失,毕竟操作系统实现线程之间的切换时需要从用户态转换到核心态,这个状态之间的转换需要相对比较长的时间,时间成本相对较高,因此自旋锁会假设在不久将来,当前的线程可以获得锁,因此虚拟机会让当前想要获取锁的线程做几个空循环(这也是称为自旋的原因),一般不会太久,可能是50个循环或100循环,在经过若干次循环后,如果得到锁,就顺利进入临界区。如果还不能获得锁,那就会将线程在操作系统层面挂起,这就是自旋锁的优化方式,这种方式确实也是可以提升效率的。最后没办法也就只能升级为重量级锁了。
锁消除
消除锁是虚拟机另外一种锁的优化,这种优化更彻底,Java虚拟机在JIT编译时(可以简单理解为当某段代码即将第一次被执行时进行编译,又称即时编译),通过对运行上下文的扫描,去除不可能存在共享资源竞争的锁,通过这种方式消除没有必要的锁,可以节省毫无意义的请求锁时间,如下StringBuffer的append是一个同步方法,但是在add方法中的StringBuffer属于一个局部变量,并且不会被其他线程所使用,因此StringBuffer不可能存在共享资源竞争的情景,JVM会自动将其锁消除。

参考博客:http://blog.csdn.net/javazejian/article/details/72828483
参考书籍:深入了解java虚拟机

猜你喜欢

转载自blog.csdn.net/qq_35387891/article/details/80099090