linux平台设备驱动架构详解 Linux Platform Device and Driver

概述:

platform总线是区别于实体总线USB、 I2C、SPI 、PIC总线的虚拟总线,一些usb设备选址的话需要通过USB总线来进行寻址,而有些类似于SoC内部外设如led 看门狗 定时器是直接通过内存的寻址空间来进行寻址的,cpu与这些设备通信是不需要总线的,2.6内核以后要对所有设备进行统一管理,通过kset、kobject来建立层次关系,对这些直接通过内存寻址的设备虚拟了一种总线即platform总线,在硬件上实际是没有这个总线;platform内核纯软件的总线,所有的直接通过内存寻址的设备都映射到这条总线上;

从linux 2.6 开始就引入了一套新的驱动管理和注册的机制:platform_driver和platform_device

platform机制:将设备本身的资源注册进内核,由内核统一管理,在驱动程序中使用这些资源时,通过platformdevice提供的标准接口进行申请并使用。这样就提高了驱动和资源管理的独立性,并且拥有较好的可移植性和安全性(这些标准接口都是安全的)。

开发的基本流程:

定义platformdevice

注册platformdevice

定义platformdriver

注册platformdriver

设备资源信息相关:

包括有设备地址,中断号等等;

kernel\include\linux\platform_device.h

struct platform_device {
const char * name;
u32   id;
struct device dev;
u32   num_resources;
struct resource * resource;
};

kernel\include\linux\ioport.h

struct resource {
const char *name;
unsigned long start, end;
unsigned long flags;
struct resource *parent, *sibling, *child;
};

举例子来说明:

s3c2410平台的i2c驱动
/* arch/arm/mach-s3c2410/devs.c */
/* I2C */
static struct resource s3c_i2c_resource[] = {
      [0] = {
               .start = S3C24XX_PA_IIC,
               .end = S3C24XX_PA_IIC + S3C24XX_SZ_IIC - 1,
               .flags = IORESOURCE_MEM,
      },
      [1] = {
               .start = IRQ_IIC, //S3C2410_IRQ(27)
               .end = IRQ_IIC,
               .flags = IORESOURCE_IRQ,
      }
};

这里定义了两组resource,它描述了一个I2C设备的资源,

第1组描述了这个I2C设备所占用的总线地址范围,IORESOURCE_MEM表示第1组描述的是内存类型的资源信息,

第2组描述了这个I2C设备的中断号,IORESOURCE_IRQ表示第2组描述的是中断资源信息。

设备驱动会根据flags来获取相应的资源信息。

有了resource信息,就可以定义platform_device了:
  
struct platform_device s3c_device_i2c = {
      .name = "s3c2410-i2c",
      .id = -1,
      .num_resources = ARRAY_SIZE(s3c_i2c_resource),
      .resource = s3c_i2c_resource,
};
定义好了platform_device结构体后就可以调用函数platform_add_devices向系统中添加该设备

之后可以调用platform_device_register()进行设备注册。要注意的是,这里的platform_device设备的注册过程必须在相应设备驱动加载之前被调用,即执行platform_driver_register之前,原因是因为驱动注册时需要匹配内核中所以已注册的设备名。

s3c2410-i2c的platform_device是在系统启动时,在cpu.c里的s3c_arch_init()函数里进行注册的,这个函数申明为arch_initcall(s3c_arch_init);会在系统初始化阶段被调用。
arch_initcall的优先级高于module_init。所以会在Platform驱动注册之前调用。(详细参考include/linux/init.h)

s3c_arch_init函数如下:
/* arch/arm/mach-3sc2410/cpu.c */
static int __init s3c_arch_init(void)
{
int ret;
……
/* 这里board指针指向在mach-smdk2410.c里的定义的smdk2410_board,里面包含了预先定义的I2C Platform_device等. */
if (board != NULL) {
       struct platform_device **ptr = board->devices;
       int i;
       for (i = 0; i   board->devices_count; i++, ptr++) {
         ret = platform_device_register(*ptr); //在这里进行注册
         if (ret) {
            printk(KERN_ERR "s3c24xx: failed to add board device %s (%d) @%p\n", (*ptr)->name, 
ret, *ptr);
         }
       }
       /* mask any error, we may not need all these board
      * devices */
       ret = 0;
}
return ret;
}

同时被注册还有很多其他平台的platform_device,详细查看arch/arm/mach-s3c2410/mach-smdk2410.c里的smdk2410_devices结构体。


驱动程序需要实现结构体

struct platform_driver,参考drivers/i2c/busses
/* device driver for platform bus bits */
static struct platform_driver s3c2410_i2c_driver = {
      .probe = s3c24xx_i2c_probe,
      .remove = s3c24xx_i2c_remove,
      .resume = s3c24xx_i2c_resume,
      .driver = {
               .owner = THIS_MODULE,
               .name = "s3c2410-i2c",
      },
};

在驱动初始化函数中调用函数platform_driver_register()注册platform_driver,需要注意的是s3c_device_i2c结构中name元素和s3c2410_i2c_driver结构中driver.name必须是相同的,这样在platform_driver_register()注册时会对所有已注册的所有platform_device中的name和当前注册的platform_driver的driver.name进行比较,只有找到相同的名称的platfomr_device才能注册成功,当注册成功时会调用platform_driver结构元素probe函数指针,这里就是s3c24xx_i2c_probe,当进入probe函数后,需要获取设备的资源信息,常用获取资源的函数主要是:
struct resource * platform_get_resource(struct platform_device *dev, unsigned int type, unsigned int num);
根据参数type所指定类型,例如IORESOURCE_MEM,来获取指定的资源。

struct int platform_get_irq(struct platform_device *dev, unsigned int num);
获取资源中的中断号。

下面举s3c24xx_i2c_probe函数分析,看看这些接口是怎么用的。
前面已经讲了,s3c2410_i2c_driver注册成功后会调用s3c24xx_i2c_probe执行,下面看代码:
/* drivers/i2c/busses/i2c-s3c2410.c */
static int s3c24xx_i2c_probe(struct platform_device *pdev)
{
struct s3c24xx_i2c *i2c = &s3c24xx_i2c;
struct resource *res;
int ret;

/* find the clock and enable it */

i2c->dev = &pdev->dev;
i2c->clk = clk_get(&pdev->dev, "i2c");
if (IS_ERR(i2c->clk)) {
    dev_err(&pdev->dev, "cannot get clock\n");
    ret = -ENOENT;
    goto out;
}
dev_dbg(&pdev->dev, "clock source %p\n", i2c->clk);
clk_enable(i2c->clk);
/* map the registers */
res = platform_get_resource(pdev, IORESOURCE_MEM, 0); /* 获取设备的IO资源地址 */
if (res == NULL) {
    dev_err(&pdev->dev, "cannot find IO resource\n");
    ret = -ENOENT;
    goto out;
}

i2c->ioarea = request_mem_region(res->start, (res->end-res->start)+1, pdev->name); /* 申请这块IO Region */

if (i2c->ioarea == NULL) {
    dev_err(&pdev->dev, "cannot request IO\n");
    ret = -ENXIO;
    goto out;
}

i2c->regs = ioremap(res->start, (res->end-res->start)+1); /* 映射至内核虚拟空间 */

if (i2c->regs == NULL) {
    dev_err(&pdev->dev, "cannot map IO\n");
    ret = -ENXIO;
    goto out;
}

dev_dbg(&pdev->dev, "registers %p (%p, %p)\n", i2c->regs, i2c->ioarea, res);

/* setup info block for the i2c core */
i2c->adap.algo_data = i2c;
i2c->adap.dev.parent = &pdev->dev;

/* initialise the i2c controller */
ret = s3c24xx_i2c_init(i2c);
if (ret != 0)
    goto out;
/* find the IRQ for this unit (note, this relies on the init call to ensure no current IRQs pending */

res = platform_get_resource(pdev, IORESOURCE_IRQ, 0); /* 获取设备IRQ中断号 */
if (res == NULL) {
    dev_err(&pdev->dev, "cannot find IRQ\n");
    ret = -ENOENT;
    goto out;
}

ret = request_irq(res->start, s3c24xx_i2c_irq, IRQF_DISABLED, /* 申请IRQ */
    pdev->name, i2c);

……
return ret;

}

总结一下platform device和platform driver

先定义platform device:包括地址,中断等等资源;

再注册platform_device_register:有了资源才能进行注册,platform_device是在系统启动时,在cpu.c里的s3c_arch_init()函数里进行注册的,这个函数申明为arch_initcall(s3c_arch_init);会在系统初始化阶段被调用。arch_initcall的优先级高于module_init。同时还会有很多其他设备一起被注册。

再定义platform_driver

再调用函数platform_driver_register()注册platform_driver;platformdriver必须匹配上platformdvice才能注册成功。

注册时会调用probe的函数指针。那probe里面会通过调用platform_get_resource,platform_get_irq等函数进行一系列的操作。从而完成platform驱动的注册。

只要和内核本身运行依赖性不大的外围设备(换句话说只要不在内核运行所需的一个最小系统之内的设备),相对独立的,拥有各自独自的资源(addresses and IRQs),都可以用platform_driver实现。如:lcd,usb,uart等,都可以用platfrom_driver写,而timer,irq等最小系统之内的设备则最好不用platfrom_driver机制,实际上内核实现也是这样的。

以下这篇文章的理解表达的更简明扼要

https://www.cnblogs.com/biaohc/p/6667529.html

1:什么是platform总线?
platform总线是区别于实体总线USB、 I2C、SPI 、PIC总线的虚拟总线,一些usb设备选址的话需要通过USB总线来进行寻址,

而有些类似于SoC内部外设如led 看门狗 定时器是直接通过内存的寻址空间来进行寻址的,cpu与这些设备通信是不需要总线的,2.6内核以后要

对所有设备进行统一管理,通过kset、kobject来建立层次关系,对这些直接通过内存寻址的设备虚拟了一种总线即platform总线,在硬件上

实际是没有这个总线;platform内核纯软件的总线,所有的直接通过内存寻址的设备都映射到这条总线上;

2:platform总线的优点

  a:可以通过platform总线,可以遍历所有的platform总线设备;platform本质其实也是kset、kobject,具有kobject的特性

  b:实现设备与驱动的分离,通过platform总线,设备与驱动是分开注册的,通过platform总线的probe来随时检测与设备匹配的驱动,如匹配上即进行这个设备的驱动注册;

  c:由于上面这个优势,一个驱动可以供同类的几个设备使用

3:platform总线以及platform总线设备驱动的实现流程

  a:platform总线注册

  b:platform_device注册

  c:platform_driver注册

  d:设备与驱动的匹配

  e:驱动的注册

platform总线的工作流程如下图:

猜你喜欢

转载自blog.csdn.net/haigand/article/details/89589304