深入理解JVM虚拟机6:JVM常用参数以及调优实践

JVM常用参数选项

配置参数 功能
-Xms 初始堆大小。如:-Xms256m
-Xmx 最大堆大小。如:-Xmx512m
-Xmn 新生代大小。通常为 Xmx 的 1/3 或 1/4。新生代 = Eden + 2 个 Survivor 空间。实际可用空间为 = Eden + 1 个 Survivor,即 90%
-Xss JDK1.5+ 每个线程堆栈大小为 1M,一般来说如果栈不是很深的话, 1M 是绝对够用了的。
-XX:NewRatio 新生代与老年代的比例,如 –XX:NewRatio=2,则新生代占整个堆空间的1/3,老年代占2/3
-XX:SurvivorRatio 新生代中 Eden 与 Survivor 的比值。默认值为 8。即 Eden 占新生代空间的 8/10,另外两个 Survivor 各占 1/10
-XX:PermSize 永久代(方法区)的初始大小
-XX:MaxPermSize 永久代(方法区)的最大值
-XX:+PrintGCDetails 打印 GC 信息
-XX:+HeapDumpOnOutOfMemoryError 让虚拟机在发生内存溢出时 Dump 出当前的内存堆转储快照,以便分析用

注意:PermSize永久代的概念在jdk1.8中已经不存在了,取而代之的是metaspace元空间,当认为执行永久代的初始大小以及最大值是jvm会给出如此下提示:
Java HotSpot™ 64-Bit Server VM warning: ignoring option PermSize=30m; support was removed in 8.0
Java HotSpot™ 64-Bit Server VM warning: ignoring option MaxPermSize=30m; support was removed in 8.0

GC调优参数总结

在这里插入图片描述

1. Serial 收集器参数

串行收集器,client 的默认收集器,分为年轻代 Serial 和老年代 Serial Old 收集器。

  1. -XX:+UseSerialGC 这个参数就是可以指定使用新生代串行收集器和老年代串行收集器, “+” 号的意思是ture,开启,反之,如果是 “-”号,则是关闭。

  2. -XX:+UseParNewGC 新生代使用 ParNew 回收器,老年代使用串行收集器。

  3. -XX:+UseParallelGC 新生代私用 ParallelGC 回收器,老年代使用串行收集器。

而 Serial 收集器出现的日志为 DefNew .

2. ParNew 收集器参数

并行收集器是 Serial 的多线程版本,在 CPU 并行能力强大的计算机上有很大优势。

其中:

  1. -XX:+UseParNewGC 上面说过了,新生代使用 ParNew 收集器,老年代使用串行收集器。

  2. -XX:+UseConcMarkSweepGC: 新生代使用 ParNew 回收器,老年代使用 CMS。

  3. -XX:ParallelGCThreads={value} 这个参数是指定并行 GC 线程的数量,一般最好和 CPU 核心数量相当。默认情况下,当 CPU 数量小于8, ParallelGCThreads 的值等于 CPU 数量,当 CPU 数量大于 8 时,则使用公式:3+((5*CPU)/ 8);同时这个参数只要是并行 GC 都可以使用,不只是 ParNew。

而 ParNew 的 GC 日志则表吸纳出 ParNew。

3. PS 收集器参数

全称 Parallel Scavenge 收集器,该收集器是 Java 8 的默认收集器,因为它能够根据系统当前状态给出吞吐量最高的GC 配置。所以,在一些手工调优复杂的场合或者对实时性要求不高的场合,可以使用该处理器。

有哪些参数呢?

  1. -XX:MaxGCPauseMillis 设置最大垃圾收集停顿时间,他的值是一个大于0的整数。ParallelGC 工作时,会调整 Java 堆大小或者其他的一些参数,尽可能的把停顿时间控制在 MaxGCPauseMillis 以内。如果为了将停顿时间设置的很小,将此值也设置的很小,那么 PS 将会把堆设置的也很小,这将会到值频繁 GC ,虽然系统停顿时间小了,但总吞吐量下降了。

  2. -XX:GCTimeRatio 设置吞吐量大小,他的值是一个0 到100之间的整数,假设 GCTimeRatio 的值是 n ,那么系统将花费不超过 1/(1+n) 的时间用于垃圾收集,默认 n 是99,即不超过1% 的时间用于垃圾收集。

  3. -XX:+UseParallelGC 新生代使用 ParallelGC 回收器,老年代使用串行回收器。

  4. -XX:+UseParallelOldGC 新生代使用 ParallelGC 回收器,老年代使用 ParallelOldGC 回收器。

  5. -XX:UseAdaptiveSizePolicy: 打开自适应策略。在这种模式下,新生代的大小,eden 和 Survivor 的比例,晋升老年代的对象年龄等参数会被自动调整。以达到堆大小,吞吐量,停顿时间的平衡点。

聪明的同学相比看出来了,1 和 2 两个参数是矛盾的。因为吞吐量和停顿时间就是矛盾的。所以,要根据应用的特性来进行设置,以达到最优水平。

同时,Parallel Old 收集器也是一种关注吞吐量的并行的老年代回收器。

  1. -XX:+UseParallelOldGC 新生代使用 ParallelGC 回收器,老年代使用 ParallelOldGC 回收器。该参数可以启用 ParallelOldGC。

  2. -XX:ParallelGCGThreads 同时可以指定该参数设置并行线程数量。

而 PS 处理器的 GC 日志则是 PSYoungGen。

4. CMS 收集器参数

CMS 处理器关注的是停顿时间。全称 Concurrent Mark Sweep。因为该处理器较为复杂,因此可以使用较多参数。

  1. -XX:-CMSPrecleaningEnabled 不进行预清理,度过我们之前的文章的都知道,CMS 在并发标记和重新标记的这段时间内,会有一个预清理的工作,而这个通过会尝试5秒之内等待来一次 YGC。以免在后面的重新标记阶段耗费大量时间来标记新生代的对象。

  2. -XX:+UseConcMarkSweepGC 此参数将启动 CMS 回收器。默认新生代是 ParNew,也可以设置 Serial 为新生代收集器。该参数等价于 -Xconcgc。

  3. -XX:ParallelGCThreads 由于是并行处理器,当然也可以指定线程数。默认并发线程数是:(ParallelGCThreads + 3)/ 4)。

  4. -XX:ConcGCThreads 或者 -XX:ParallelCMSThreads ;除了上面设置线程的方式,你也可以通过这个两个参数任意一个手工设定 CMS 并发线程数。

  5. -XX:CMSInitiatingOccupancyFraction 由于 CMS 回收器不是独占式的,在垃圾回收的时候应用程序仍在工作,所以需要留出足够的内存给应用程序,否则会触发 FGC。而什么时候运行 CMS GC 呢?通过该参数即可设置,该参数表示的是老年代的内存使用百分比。当达到这个阈值就会执行 CMS。默认是68。 如果老年代内存增长很快,建议降低阈值,避免 FGC,如果增长慢,则可以加大阈值,减少 CMS GC 次数。提高吞吐量。

  6. -XX:+UseCMSCompactAtFullCollection 由于 CMS 使用标记清理算法,内存碎片无法避免。该参数指定每次 CMS 后进行一次碎片整理。

  7. -XX:CMSFullGCsBeforeCompaction 由于每次进行碎片整理将会影响性能,你可以使用该参数设定多少次 CMS 后才进行一次碎片整理,也就是内存压缩。

  8. -XX:+CMSClassUnloadingEnabled 允许对类元数据进行回收。

  9. -XX:CMSInitiatingPermOccupancyFraction 当永久区占用率达到这一百分比时,启动 CMS 回收(前提是 -XX:+CMSClassUnloadingEnabled 激活了)。

  10. -XX:UseCMSInitiatingOccupancyOnly 表示只在到达阈值的时候才进行 CMS 回收。

  11. XX:CMSWaitDuration=2000 由于CMS GC 条件比较简单,JVM有一个线程定时扫描Old区,时间间隔可以通过该参数指定(毫秒单位),默认是2s。

CMS 的 GC 日志 就是 CMS。

5. G1 收集器参数

作为 Java 9 的默认垃圾收集器,该收集器和之前的收集器大不相同,该收集器可以工作在young 区,也可以工作在 old 区。有哪些参数呢?

  1. -XX:+UseG1GC 开启 G1 收集器。

  2. -XX:MaxGCPauseMillis 用于指定最大停顿时间,如果任何一次停顿超过这个设置值时,G1 就会尝试调整新生代和老年代的比例,调整堆大小,调整晋升年龄的手段,试图达到目标。和 PS 一样,停顿时间小了,对应的吞吐量也会变小。这点值得注意。

  3. -XX:ParallelGCThreads 由于是并行并发的,可以指定GC 工作线程数量。

  4. -XX:InitiatingHeapOccupancyPercent 该参数可以指定当整个堆使用率达到多少时,触发并发标记周期的执行。默认值时45,即当堆的使用率达到45%,执行并发标记周期,该值一旦设置,始终都不会被 G1修改。也就是说,G1 就算为了满足 MaxGCPauseMillis 也不会修改此值。如果该值设置的很大,导致并发周期迟迟得不到启动,那么引起 FGC 的几率将会变大。如果过小,则会频繁标记,GC 线程抢占应用程序CPU 资源,性能将会下降。

  5. -XX:GCPauseIntervalMillis 设置停顿时间间隔。

6. 一些通用参数

在 GC 调优中,还有一些通用的参数。通常是我们的好帮手。

  1. -XX:-+DisableExplicitGC 禁用 System.gc(),由于该方法默认会触发 FGC,并且忽略参数中的 UseG1GC 和 UseConcMarkSweepGC,因此必要时可以禁用该方法。

  2. -XX:+ExplicitGCInvokesConcurrent 该参数可以改变上面的行为,也就是说,System.gc() 后不使用 FGC ,而是使用配置的并发收集器进行并发收集。注意:使用此选项就不要 使用 上面的选项。

  3. -XX:-ScavengeBeforeFullGC 由于大部分 FGC 之前都会 YGC,减轻了 FGC 的压力,缩短了 FGC 的停顿时间,但也可能你不需要这个特性,那么你可以使用这个参数关闭,默认是 ture 开启。

  4. -XX:MaxTenuringThreshold={value} 新生代 to 区的对象在经过多次 GC 后,如果还没有死亡,则认为他是一个老对象,则可以晋升到老年代,而这个年龄(GC 次数)是可以设置的,有就是这个参数。默认值时15。超过15 则认为是无限大(因为age变量时4个 bit,超过15无法表达)。但该参数不是唯一决定对象晋升的条件。当 to 区不够或者改对象年龄已经达到了平均晋升值或者大对象等等条件。

  5. -XX:TargetSurvivorRatio={value} 决定对何时晋升的不仅只有 XX:MaxTenuringThreshold 参数,如果在 Survivor 空间中相同年龄所有对象大小的总和大鱼 Survivor 空间的一半(默认50%),年龄大于或等于该年龄的对象就可以直接进入老年代。无需在乎 XX:MaxTenuringThreshold参数。因此,MaxTenuringThreshold 只是对象晋升的最大年龄。如果将 TargetSurvivorRatio 设置的很小,对象将晋升的很快。

  6. -XX:PretenureSizeThresholds={value} 除了年龄外,对象的体积也是影响晋升的一个关键,也就是大对象。如果一个对象新生代放不下,只能直接通过分配担保机制进入老年代。该参数是设置对象直接晋升到老年代的阈值,单位是字节。只要对象的大小大于此阈值,就会直接绕过新生代,直接进入老年代。注意:这个参数只对 Serial 和 ParNew 有效,ParallelGC 无效,默认情况下该值为0,也就是不指定最大的晋升大小,一切有运行情况决定。

  7. -XX:-UseTLAB 禁用线程本地分配缓存。TLAB 的全称是 Thread LocalAllocation Buffer ,即线程本地线程分配缓存,是一个线程私有的内存区域。该设计是为了加速对象分配速度。由于对象一般都是分配在堆上,而对是线程共享的。因此肯定有锁,虽然使用 CAS 的操作,但性能仍有优化空间。通过为每一个线程分配一个 TLAB 的空间(在 eden 区),可以消除多个线程同步的开销。默认开启。

  8. -XX:TLABSize 指定 TLAB 的大小。

  9. -XX:+PrintTLAB 跟踪 TLAB 的使用情况。用以确定是用多大的 TLABSize。

  10. -XX:+ResizeTLAB 自动调整 TLAB 大小。

同时,对象也可能会在栈上分配,栈上分配,TLAB 分配,堆分配,他们的流程如下:
在这里插入图片描述
对象分配流程

还有一些开启 GC 日志的参数,是 GC 调优不可或缺的工具。

  1. -XX:+PrintGCDateStamps 打印 GC 日志时间戳。

  2. -XX:+PrintGCDetails 打印 GC 详情。

  3. -XX:+PrintGCTimeStamps: 打印此次垃圾回收距离jvm开始运行的所耗时间。

  4. -Xloggc: 将垃圾回收信息输出到指定文件

  5. -verbose:gc 打印 GC 日志

  6. -XX:+PrintGCApplicationStopedTime 查看 gc 造成的应用暂停时间

  7. XX:+PrintTenuringDistribution, 对象晋升的日志

  8. -XX:+HeapDumpOnOutOfMemoryError 内存溢出时输出 dump 文件。

性能分析

在系统层面能够影响应用性能的一般包括三个因素:CPU、内存和IO,可以从这三方面进行程序的性能瓶颈分析。

CPU分析

当程序响应变慢的时候,首先使用top、vmstat、ps等命令查看系统的cpu使用率是否有异常,从而可以判断出是否是cpu繁忙造成的性能问题。其中,主要通过us(用户进程所占的%)这个数据来看异常的进程信息。当us接近100%甚至更高时,可以确定是cpu繁忙造成的响应缓慢。一般说来,cpu繁忙的原因有以下几个:

线程中有无限空循环、无阻塞、正则匹配或者单纯的计算
发生了频繁的gc
多线程的上下文切换
确定好cpu使用率最高的进程之后就可以使用jstack来打印出异常进程的堆栈信息:

jstack [pid]
在这里插入图片描述
接下来需要注意的一点是,Linux下所有线程最终还是以轻量级进程的形式存在系统中的,而使用jstack只能打印出进程的信息,这些信息里面包含了此进程下面所有线程(轻量级进程-LWP)的堆栈信息。因此,进一步的需要确定是哪一个线程耗费了大量CPU,此时可以使用top -p [processId] -H来查看,也可以直接通过ps -Le来显示所有进程,包括LWP的资源耗费信息。最后,通过在jstack的输出文件中查找对应的LWP的id即可以定位到相应的堆栈信息。其中需要注意的是线程的状态:RUNNABLE、WAITING等。对于Runnable的进程需要注意是否有耗费cpu的计算。对于Waiting的线程一般是锁的等待操作。

也可以使用jstat来查看对应进程的gc信息,以判断是否是gc造成了cpu繁忙。

jstat -gcutil [pid]
在这里插入图片描述
还可以通过vmstat,通过观察内核状态的上下文切换(cs)次数,来判断是否是上下文切换造成的cpu繁忙。

vmstat 1 5
在这里插入图片描述
此外,有时候可能会由jit引起一些cpu飚高的情形,如大量方法编译等。这里可以使用-XX:+PrintCompilation这个参数输出jit编译情况,以排查jit编译引起的cpu问题。

内存分析

对Java应用来说,内存主要是由堆外内存和堆内内存组成。

堆外内存

堆外内存主要是JNI、Deflater/Inflater、DirectByteBuffer(nio中会用到)使用的。对于这种堆外内存的分析,还是需要先通过vmstat、sar、top、pidstat(这里的sar,pidstat以及iostat都是sysstat软件套件的一部分,需要单独安装)等查看swap和物理内存的消耗状况再做判断的。此外,对于JNI、Deflater这种调用可以通过Google-preftools来追踪资源使用状况。

堆内内存

此部分内存为Java应用主要的内存区域。通常与这部分内存性能相关的有:

  1. 创建的对象:这个是存储在堆中的,需要控制好对象的数量和大小,尤其是大的对象很容易进入老年代

  2. 全局集合:全局集合通常是生命周期比较长的,因此需要特别注意全局集合的使用

  3. 缓存:缓存选用的数据结构不同,会很大程序影响内存的大小和gc

  4. ClassLoader:主要是动态加载类容易造成永久代内存不足

  5. 多线程:线程分配会占用本地内存,过多的线程也会造成内存不足
    以上使用不当很容易造成:

  6. 频繁GC -> Stop the world,使你的应用响应变慢

  7. OOM,直接造成内存溢出错误使得程序退出。OOM又可以分为以下几种:

  8. Heap space:堆内存不足

  9. PermGen space:永久代内存不足

  10. Native thread:本地线程没有足够内存可分配

排查堆内存问题的常用工具是jmap,是jdk自带的。一些常用用法如下:

  1. 查看jvm内存使用状况:jmap -heap
  2. 查看jvm内存存活的对象:jmap -histo:live
  3. 把heap里所有对象都dump下来,无论对象是死是活:jmap -dump:format=b,file=xxx.hprof
  4. 先做一次full GC,再dump,只包含仍然存活的对象信息:jmap -dump:format=b,live,file=xxx.hprof

IO分析

通常与应用性能相关的包括:文件IO和网络IO。

文件IO

可以使用系统工具pidstat、iostat、vmstat来查看io的状况。这里可以看一张使用vmstat的结果图。
在这里插入图片描述
这里主要注意bi和bo这两个值,分别表示块设备每秒接收的块数量和块设备每秒发送的块数量,由此可以判定io繁忙状况。进一步的可以通过使用strace工具定位对文件io的系统调用。通常,造成文件io性能差的原因不外乎:

大量的随机读写
设备慢
文件太大

网络IO

查看网络io状况,一般使用的是netstat工具。可以查看所有连接的状况、数目、端口信息等。例如:当time_wait或者close_wait连接过多时,会影响应用的相应速度。

 netstat -anp

在这里插入图片描述

性能调优

与性能分析相对应,性能调优同样分为三部分。

CPU调优

  • 不要存在一直运行的线程(无限while循环),可以使用sleep休眠一段时间。这种情况普遍存在于一些pull方式消费数据的场景下,当一次pull没有拿到数据的时候建议sleep一下,再做下一次pull。
  • 轮询的时候可以使用wait/notify机制
  • 避免循环、正则表达式匹配、计算过多,包括使用String的format、split、replace方法(可以使用apache的commons-lang里的StringUtils对应的方法),使用正则去判断邮箱格式(有时候会造成死循环)、序列/反序列化等。
  • 结合jvm和代码,避免产生频繁的gc,尤其是full GC。

此外,使用多线程的时候,还需要注意以下几点:

  • 使用线程池,减少线程数以及线程的切换
  • 多线程对于锁的竞争可以考虑减小锁的粒度(使用ReetrantLock)、拆分锁(类似ConcurrentHashMap分bucket上锁),
    或者使用CAS、ThreadLocal、不可变对象等无锁技术。此外,多线程代码的编写最好使用jdk提供的并发包、Executors框架以及ForkJoin等,此外Discuptor和Actor在合适的场景也可以使用。

内存调优

内存的调优主要就是对jvm的调优。

  • 合理设置各个代的大小。避免新生代设置过小(不够用,经常minor gc并进入老年代)以及过大(会产生碎片),同样也要避免Survivor设置过大和过小。
  • 选择合适的GC策略。需要根据不同的场景选择合适的gc策略。这里需要说的是,cms并非全能的。除非特别需要再设置,毕竟cms的新生代回收策略parnew并非最快的,且cms会产生碎片。此外,G1直到jdk8的出现也并没有得到广泛应用,并不建议使用。
  • jvm启动参数配置-XX:+PrintGCDetails -XX:+PrintGCDateStamps -Xloggc:[log_path],以记录gc日志,便于排查问题。

其中,对于第一点,具体的还有一点建议:

  • 年轻代大小选择:响应时间优先的应用,尽可能设大,直到接近系统的最低响应时间限制(根据实际情况选择)。在此种情况下,年轻代收集发生gc的频率是最小的。同时,也能够减少到达年老代的对象。吞吐量优先的应用,也尽可能的设置大,因为对响应时间没有要求,垃圾收集可以并行进行,建议适合8CPU以上的应用使用。
  • 年老代大小选择:响应时间优先的应用,年老代一般都是使用并发收集器,所以其大小需要小心设置,一般要考虑并发会话率和会话持续时间等一些参数。如果堆设置小了,会造成内存碎片、高回收频率以及应用暂停而使用传统的标记清除方式;如果堆大了,则需要较长的收集时间。最优化的方案,一般需要参考以下数据获得:
  • 并发垃圾收集信息
  • 持久代并发收集次数
  • 传统GC信息
  • 花在年轻代和年老代回收上的时间比例

一般吞吐量优先的应用都应该有一个很大的年轻代和一个较小的年老代。这样可以尽可能回收掉大部分短期对象,减少中期的对象,而年老代存放长期存活对象。

此外,较小堆引起的碎片问题:因为年老代的并发收集器使用标记、清除算法,所以不会对堆进行压缩。当收集器回收时,会把相邻的空间进行合并,这样可以分配给较大的对象。但是,当堆空间较小时,运行一段时间以后,就会出现“碎片”,如果并发收集器找不到足够的空间,那么并发收集器将会停止,然后使用传统的标记、清除方式进行回收。如果出现“碎片”,可能需要进行如下配置:-XX:+UseCMSCompactAtFullCollection,使用并发收集器时,开启对年老代的压缩。同时使用-XX:CMSFullGCsBeforeCompaction=xx设置多少次Full GC后,对年老代进行压缩。

代码上,也需要注意:

  • 避免保存重复的String对象,同时也需要小心String.subString()与String.intern()的使用,尤其是后者其底层数据结构为StringTable,当字符串大量不重复时,会使得StringTable非常大(一个固定大小的hashmap,可以由参数-XX:StringTableSize=N设置大小),从而影响young gc的速度。在jackson和fastjson中使用了此方法,某些场景下会引起gc问题: YGC越来越慢,为什么。
  • 尽量不要使用finalizer
  • 释放不必要的引用:ThreadLocal使用完记得释放以防止内存泄漏,各种stream使用完也记得close。
  • 使用对象池避免无节制创建对象,造成频繁gc。但不要随便使用对象池,除非像连接池、线程池这种初始化/创建资源消耗较大的场景,
  • 缓存失效算法,可以考虑使用SoftReference、WeakReference保存缓存对象
  • 谨慎热部署/加载的使用,尤其是动态加载类等
  • 不要用Log4j输出文件名、行号,因为Log4j通过打印线程堆栈实现,生成大量String。此外,使用log4j时,建议此种经典用法,先判断对应级别的日志是否打开,再做操作,否则也会生成大量String。
  if (logger.isInfoEnabled()) {
      logger.info(msg);
  }

IO调优

文件IO上需要注意:

  • 考虑使用异步写入代替同步写入,可以借鉴redis的aof机制。
  • 利用缓存,减少随机读
  • 尽量批量写入,减少io次数和寻址
  • 使用数据库代替文件存储

网络IO上需要注意:

  • 和文件IO类似,使用异步IO、多路复用IO/事件驱动IO代替同步阻塞IO
  • 批量进行网络IO,减少IO次数
  • 使用缓存,减少对网络数据的读取
  • 使用协程: Quasar

猜你喜欢

转载自blog.csdn.net/qq_38311489/article/details/89672892
今日推荐