什么是CAS机制?(转)

围绕下面四个点展开叙述:

  一:什么是CAS机制?

  二:Java当中CAS的底层实现

  三:CAS的ABA问题和解决方法

  四:java8对CAS的优化


一:什么是CAS机制?

我们先看一段代码:

启动两个线程,每个线程中让静态变量count循环累加100次。

public class Test4 {
    public static int count =0;
    
    public static void main(String[] args) {
        for(int i = 0; i < 2; i++) {
            new Thread(
                        new Runnable(){
                            @Override
                            public void run() {
                                try {
                                    Thread.sleep(10);
                                } catch (InterruptedException e) {
                                    e.printStackTrace();
                                }
                                for(int j = 0; j < 100; j++) {
                                    count++;
                                }
                            }}
                    ).start();
        }
        try {
            Thread.sleep(2000);
        } catch (InterruptedException e) {
            e.printStackTrace();
        }
        
        System.out.println("count="+ count);
    }

}

多次console输出结果:小于200的值

我们再加上synchronized同步锁,再来看一下。

console结果: 200

  加了同步锁之后,count自增的操作变成了原子性操作,所以最终输出一定是count=200,代码实现了线程安全。虽然synchronized确保了线程安全,但是在某些情况下,这并不是一个最有的选择。

关键在于性能问题。

  synchronized关键字会让没有得到锁资源的线程进入BLOCKED状态,而后在争夺到锁资源后恢复为RUNNABLE状态,这个过程中涉及到操作系统用户模式和内核模式的转换,代价比较高。

  尽管JAVA 1.6为synchronized做了优化,增加了从偏向锁到轻量级锁再到重量级锁的过过度,但是在最终转变为重量级锁之后,性能仍然比较低。所以面对这种情况,我们就可以使用java中的“原子操作类”。

  所谓原子操作类,指的是java.util.concurrent.atomic包下,一系列以Atomic开头的包装类。如AtomicBoolean,AtomicUInteger,AtomicLong。它们分别用于Boolean,Integer,Long类型的原子性操作。

现在我们尝试使用AtomicInteger类:

 

使用AtomicInteger之后,最终的输出结果同样可以保证是200。并且在某些情况下,代码的性能会比synchronized更好。

Atomic操作类的底层正是用到了“CAS机制”。

CAS是英文单词Compare and Swap的缩写,翻译过来就是比较并替换。

CAS机制中使用了3个基本操作数内存地址V旧的预期值A要修改的新值B

更新一个变量的时候,只有当变量的预期值A和内存地址V当中的实际值相同时,才会将内存地址V对应的值修改为B。

我们看一个例子:

1. 在内存地址V当中,存储着值为10的变量。

2. 此时线程1想把变量的值增加1.对线程1来说,旧的预期值A=10,要修改的新值B=11.

3. 在线程1要提交更新之前,另一个线程2抢先一步,把内存地址V中的变量值率先更新成了11。

4. 线程1开始提交更新,首先进行A和地址V的实际值比较,发现A不等于V的实际值,提交失败。

5. 线程1 重新获取内存地址V的当前值,并重新计算想要修改的值。此时对线程1来说,A=11,B=12。这个重新尝试的过程被称为自旋。

6. 这一次比较幸运,没有其他线程改变地址V的值。线程1进行比较,发现A和地址V的实际值是相等的。

7. 线程1进行交换,把地址V的值替换为B,也就是12.

  从思想上来说,synchronized属于悲观锁,悲观的认为程序中的并发情况严重,所以严防死守,CAS属于乐观锁,乐观地认为程序中的并发情况不那么严重,所以让线程不断去重试更新。

  在java中除了上面提到的Atomic系列类,以及Lock系列类夺得底层实现,甚至在JAVA1.6以上版本,synchronized转变为重量级锁之前,也会采用CAS机制。

CAS的缺点: 

1) CPU开销过大

  在并发量比较高的情况下,如果许多线程反复尝试更新某一个变量,却又一直更新不成功,循环往复,会给CPU带来很到的压力。

2) 不能保证代码块的原子性

  CAS机制所保证的知识一个变量的原子性操作,而不能保证整个代码块的原子性。比如需要保证3个变量共同进行原子性的更新,就不得不使用synchronized了。

3) ABA问题

  这是CAS机制最大的问题所在。(后面有介绍)

二:Java当中CAS的底层实现

  先来一个小例子:i++自增操作

public class CASTest {
    static int i = 0;

    public static void increment() {
        i++;
    }
}

有没有其他方法来代替 synchronized 对方法的加锁,并且保证 increment() 方法是线程安全呢?

大家看一下,如果我采用下面这种方式,能否保证 increment 是线程安全的呢?步骤如下:

  1、线程从内存中读取 i 的值,假如此时 i 的值为 0,我们把这个值称为 k 吧,即此时 k = 0。

  2、令 j = k + 1。

  3、用 k 的值与内存中i的值相比,如果相等,这意味着没有其他线程修改过 i 的值,我们就把 j(此时为1) 的值写入内存;如果不相等(意味着i的值被其他线程修改过),我们就不把j的值写入内存,而是重新跳回步骤 1,继续这三个操作。

翻译成代码的话就是这样:

public static void increment() {
    do{
        int k = i;
        int j = k + 1;
    }while (compareAndSet(i, k, j))
}

  如果你去模拟一下,就会发现,这样写是线程安全的。

  这里可能有人会说,第三步的 compareAndSet 这个操作不仅要读取内存,还干了比较、写入内存等操作,,,这一步本身就是线程不安全的啊?

  如果你能想到这个,说明你是真的有去思考、模拟这个过程,不过我想要告诉你的是,这个 compareAndSet 操作,他其实只对应操作系统的一条硬件操作指令,尽管看似有很多操作在里面,但操作系统能够保证他是原子执行的。

  对于一条英文单词很长的指令,我们都喜欢用它的简称来称呼他,所以,我们就把 compareAndSet 称为 CAS 吧。

  所以,采用 CAS 这种机制的写法也是线程安全的,通过这种方式,可以说是不存在锁的竞争,也不存在阻塞等事情的发生,可以让程序执行的更好。

  在 Java 中,也是提供了这种 CAS 的原子类,例如:

  1. AtomicBoolean
  2. AtomicInteger
  3. AtomicLong
  4. AtomicReference

我们再来看看jdk中AtomicInteger当中常用的自增方法incrementAndGet:

public final int incrementAndGet() {

    for (;;) {

        int current = get();

        int next = current + 1;

        if (compareAndSet(current, next))

            return next;

    }

}

private volatile int value; 

public final int get() {

    return value;

}

这段代码是一个无限循环,也就是CAS的自旋,循环体中做了三件事:

  1. 获取当前值

  2. 当前值+1,计算出目标值

  3. 进行CAS操作,如果成功则跳出循环,如果失败则重复上述步骤

这里需要注意的重点是get方法,这个方法的作用是获取变量的当前值。

如何保证获取的当前值是内存中的最新值?很简单,用volatile关键字来保证(保证线程间的可见性)。我们接下来看一下compareAndSet方法的实现:

compareAndSet方法的实现很简单,只有一行代码。这里涉及到两个重要的对象,一个是unsafe,一个是valueOffset。

  什么是unsafe呢?Java语言不像C,C++那样可以直接访问底层操作系统,但是JVM为我们提供了一个后门,这个后门就是unsafe。unsafe为我们提供了硬件级别的原子操作

  至于valueOffset对象,是通过unsafe.objectFiledOffset方法得到,所代表的是AtomicInteger对象value成员变量在内存中的偏移量。我们可以简单的把valueOffset理解为value变量的内存地址

  我们上面说过,CAS机制中使用了3个基本操作数:内存地址V,旧的预期值A,要修改的新值B。

  而unsafe的compareAndSwapInt方法的参数包括了这三个基本元素:valueOffset参数代表了V,expect参数代表了A,update参数代表了B。

  正是unsafe的compareAndSwapInt方法保证了Compare和Swap操作之间的原子性操作。

三:CAS的ABA问题和解决方法

我们现在来说什么是ABA问题。假设内存中有一个值为A的变量,存储在地址V中。

此时有三个线程想使用CAS的方式更新这个变量的值,每个线程的执行时间有略微偏差。线程1和线程2已经获取当前值,线程3还未获取当前值。

接下来,线程1先一步执行成功,把当前值成功从A更新为B;同时线程2因为某种原因被阻塞住,没有做更新操作;线程3在线程1更新之后,获取了当前值B。

在之后,线程2仍然处于阻塞状态,线程3继续执行,成功把当前值从B更新成了A。

最后,线程2终于恢复了运行状态,由于阻塞之前已经获得了“当前值A”,并且经过compare检测,内存地址V中的实际值也是A,所以成功把变量值A更新成了B。

看起来这个例子没啥问题,但如果结合实际,就可以发现它的问题所在。

我们假设一个提款机的例子。假设有一个遵循CAS原理的提款机,小灰有100元存款,要用这个提款机来提款50元。

由于提款机硬件出了点问题,小灰的提款操作被同时提交了两次,开启了两个线程,两个线程都是获取当前值100元,要更新成50元。

理想情况下,应该一个线程更新成功,一个线程更新失败,小灰的存款值被扣一次。

线程1首先执行成功,把余额从100改成50.线程2因为某种原因阻塞。这时,小灰的妈妈刚好给小灰汇款50元。

线程2仍然是阻塞状态,线程3执行成功,把余额从50改成了100。

线程2恢复运行,由于阻塞之前获得了“当前值”100,并且经过compare检测,此时存款实际值也是100,所以会成功把变量值100更新成50。

原本线程2应当提交失败,小灰的正确余额应该保持100元,结果由于ABA问题提交成功了。

怎么解决呢?加个版本号就可以了。

真正要做到严谨的CAS机制,我们在compare阶段不仅要比较期望值A和地址V中的实际值,还要比较变量的版本号是否一致。

我们仍然以刚才的例子来说明,假设地址V中存储着变量值A,当前版本号是01。线程1获取了当前值A和版本号01,想要更新为B,但是被阻塞了。

这时候,内存地址V中变量发生了多次改变,版本号提升为03,但是变量值仍然是A。

随后线程1恢复运行,进行compare操作。经过比较,线程1所获得的值和地址的实际值都是A,但是版本号不相等,所以这一次更新失败。

在Java中,AtomicStampedReference类就实现了用版本号作比较额CAS机制。

总结:

  1. java语言CAS底层如何实现?

    利用unsafe提供的原子性操作方法。

  2.什么事ABA问题?怎么解决?

    当一个值从A变成B,又更新回A,普通CAS机制会误判通过检测。

    利用版本号比较可以有效解决ABA问题。

四:java8对CAS的优化  

  由于采用这种 CAS 机制是没有对方法进行加锁的,所以,所有的线程都可以进入 increment() 这个方法,假如进入这个方法的线程太多,就会出现一个问题:每次有线程要执行第三个步骤的时候,i 的值老是被修改了,所以线程又到回到第一步继续重头再来。

  而这就会导致一个问题:由于线程太密集了,太多人想要修改 i 的值了,进而大部分人都会修改不成功,白白着在那里循环消耗资源。

  为了解决这个问题,Java8 引入了一个 cell[] 数组,它的工作机制是这样的:假如有 5 个线程要对 i 进行自增操作,由于 5 个线程的话,不是很多,起冲突的几率较小,那就让他们按照以往正常的那样,采用 CAS 来自增吧。

  但是,如果有 100 个线程要对 i 进行自增操作的话,这个时候,冲突就会大大增加,系统就会把这些线程分配到不同的 cell 数组元素去,假如 cell[10] 有 10 个元素吧,且元素的初始化值为 0,那么系统就会把 100 个线程分成 10 组,每一组对 cell 数组其中的一个元素做自增操作,这样到最后,cell 数组 10 个元素的值都为 10,系统在把这 10 个元素的值进行汇总,进而得到 100,二这,就等价于 100 个线程对 i 进行了 100 次自增操作。

  当然,我这里只是举个例子来说明 Java8 对 CAS 优化的大致原理,具体的大家有兴趣可以去看源码,或者去搜索对应的文章哦。

猜你喜欢

转载自www.cnblogs.com/myseries/p/10773664.html