关于发现黑洞的6篇珍贵的历史文献

关于发现黑洞的6篇珍贵的历史文献

    研究问题,要掌握第一手原始资料。本文附件收集了关于黑洞研究的59篇资料,供读者查询阅读。

    这也是验证爱因斯坦广义相对论的“白纸黑字”

权威文献。 

袁萌  陈启清  4月25日

附件:关于发现黑洞的6篇珍贵的历史文献以及相关的53篇研究论文

Paper I: The Shadow of the Supermassive Black Hole

Paper II: Array and Instrumentation

Paper III: Data processing and Calibration

Paper IV: Imaging the Central Supermassive Black Hole

Paper V: Physical Origin of the Asymmetric Ring

Paper VI: The Shadow and Mass of the Central Black Hole

 

References

[1] S. Gillessen, F. Eisenhauer, S. Trippe, T. Alexander, R. Genzel, F. Martins and T. Ott, Monitoring stellar orbits around the Massive Black Hole in the Galactic Center, Astrophys. J. (2009)6921075 [arXiv:0810.4674].

[2] L. Meyer, A.M. Ghez, R. Schoedel, S. Yelda, A. Boehle, J.R. Lu, T. Do, M.R. Morris, E.E. Becklin and K. Matthews, The shortest known period star orbiting our Galaxy’s supermassive black hole, Science (2012) 338 84 [arXiv:1210.1294].

[3] M.D. Johnson et al. Resolved magnetic-field structure and variability near the event horizon of Sagittarius A*, Science (2015) 350 1242 [arXiv:1512.01220].

[4] S. Chatzopoulos, T. Fritz, O. Gerhard, S. Gillessen, C. Wegg, R. Genzel and O. Pfuhl, The old nuclear star cluster in the Milky Way: dynamics, mass, statistical parallax, and black hole mass, Mon. Not. R. Astron. Soc. (2015) 447 948 [arXiv:1403.5266].

[5] T. Johannsen, Sgr A* and General Relativity Class. Quantum Grav. (2016) 33 113001 [arXiv:1512.03818]. [6] A. Eckart, A. Huettemann, C. Kiefer, S. Britzen, M. Zajacek, C. Laemmerzahl, M. Stockler, M. Valencia-S., V. Karas and M. Garcia-Marin, The Milky Way’s supermassive black hole: how good a case is it? A challenge for astrophysics and philosophy of Science, Foundations of Physics (2017) 47 553 [arXiv:1703.09118]. [7] V.L. Fish, K. Akiyama, K.L. Bouman, A.A. Chael, M.D. Johnson, S.S. Doeleman, L. Blackburn, J.F.C. Wardle, W.T. Freeman, the Event Horizon Telescope Collaboration Observing—and Imaging—Active Galactic Nuclei with the Event Horizon Telescope, Galaxies (2016) 4 54 [arXiv:1607.03034]. [8] T. Lacroix and J. Silk, Constraining the distribution of dark matter at the Galactic centre using the high-resolution Event Horizon Telescope, Astron. Astrophys. (2013) 554 A36 [arXiv:1211.4861]. [9] T. Johannsen, A.E. Broderick, P.M. Plewa, S. Chatzopoulos, S.S. Doeleman, F.Eisenhauer, V.L. Fish, R.Genzel, O. Gerhard and M.D. Johnson, Testing General Relativity with the shadow size of Sgr A*, Phys. Rev. Lett. (2016) 116 031101 [arXiv:1512.02640]. [10] T. Johannsen, C. Wang, A.E. Broderick, S.S.Doeleman, V.L. Fish, A. Loeb and D. Psaltis, Testing General Relativity with accretion-flow imaging of Sgr A*, Phys. Rev. Lett. (2016) 117 091101 [arXiv:1608.03593]. [11] A.E. Broderick, V.L. Fish, M.D. Johnson, K. Rosenfeld, C. Wang, S.S. Doeleman, K. Akiyama, T. Johannsen and A.L. Roy Modeling seven years of Event Horizon Telescope observations with radiatively inefficient accretion flow models, Astrophys. J. (2016) 820 137 [arXiv:1602.07701]. [12] A.A. Chael, M.D. Johnson, R.Narayan, S.S. Doeleman, J.F.C. Wardle and K.L. Bouman, High resolution linear polarimetric imaging for the Event Horizon Telescope, Astrophys. J. (2016) 829 11 [arXiv:1605.06156]. [13] J. Kim, D.P. Marrone, C. Chan, L. Medeiros, F. ¨Ozel and D. Psaltis, Bayesian techniques for comparing time-dependent GRMHD simulations to variable Event Horizon Telescope observations, Astrophys. J. (2016) 832 156 [arXiv:1602.00692].

– 9 –

[14] F. Roelofs, M.D. Johnson, H. Shiokawa, S.S. Doeleman and H. Falcke, Quantifying intrinsic variability of Sagittarius A* using closure phase measurements of the Event Horizon Telescope Astrophys. J. (2017) 847 55 [arXiv:1708.01056].

[15] S. Doeleman, Seeing the unseeable, Nature Astron. 1 646 [arXiv:1710.03104].

[16] J.L. Synge, The escape of photons from gravitationally intense stars, Mon. Not. R. Astron. Soc. (1966) 131 463.

[17] J.M. Bardeen, in Black Holes, Eds. C. DeWitt, B.S. DeWitt, New York: Gordon and Breach (1973), pg. 219.

[18] S. Chandrasekhar, The Mathematical Theory of Black Holes, Oxford: Clarendon Press (1983).

[19] H. Falcke, F. Melia and E. Agol, Viewing the Shadow of the Black Hole at the Galactic Center, Astrophys. J. 528 (2000) L13 [arXiv:astro-ph/9912263].

[20] R. Takahashi, Shapes and Positions of Black Hole Shadows in Accretion Disks and Spin Parameters of Black Holes, Astrophys. J. 611 (2004) 996 [arXiv:astro-ph/0405099].

[21] H. Falcke and S. Markoff, Towards the event horizon – the supermassive black hole in the Galactic Center, Class. Quantum Grav. 30 (2013) 244003 [arXiv:1311.1841].

[22] Z. Li and C. Bambi, Measuring the Kerr spin parameter of regular black holes from their shadow, JCAP 01 (2014) 041 [arXiv:1309.1606].

[23] P.V.P. Cunha, C.A.R. Herdeiro, E. Radu and H.F. Runarsson, Shadows of Kerr black holes with scalar hair, Phys. Rev. Lett. 115 (2015) 211102 [arXiv:1509.00021].

[24] A.A. Abdujabbarov, L. Rezzolla and B.J. Ahmedov, A coordinate-independent characterization of a black hole shadow, Mon. Not. R. Astron. Soc. 454 (2015) 2423 [arXiv:1503.09054].

[25] Z. Younsi, A. Zhidenko, L. Rezzolla, R. Konoplya and Y. Mizuno, A new method for shadow calculations: application to parameterised axisymmetric black holes, Phys. Rev. D 94 (2016) 084025 [arXiv:1607.05767].

[26] N.S. Kardashev, I.D. Novikov and A.A. Shatskiy, Astrophysics of wormholes, Int. J. Mod. Phys. D 16 (2007) 909 [arXiv:astro-ph/0610441].

[27] O. James, E. von Tunzelmann, P. Franklin and K.S. Thorne, Gravitational Lensing by Spinning Black Holes in Astrophysics, and in the Movie Interstellar, Class. Quantum Grav. 32 (2015) 065001 [arXiv:1502.03808].

[28] A. Grenzebach, V. Perlick and C. Lmmerzahl, Photon Regions and Shadows of Kerr-Newman-NUT Black Holes with a Cosmological Constant, Phys. Rev. D 89 (2014) 124004 [arXiv:1403.5234].

[29] A. Grenzebach, V. Perlick and C. Lmmerzahl, Photon Regions and Shadows of Kerr-Newman-NUT Black Holes with a Cosmological Constant, Int. J. Mod. Phys. D 24 (2015) 1542024 [arXiv:1503.03036].

[30] P.V.P. Cunha and P.V.P. Herdeiro, Shadows and strong gravitational lensing: a brief review, Gen. Relativ. Gravit. 50 (2018) 42 [arXiv:1801.00860].

[31] A. Shatskiy, I.D. Novikov and N.S. Kardashev, New analytic models of traversable wormholes, Phys. Usp. 51 (2008) 457 [arXiv:0810.0468].

[32] E.O. Babichev, V.I. Dokuchaev and Yu.N. Eroshenko, Black holes in the presence of dark energy, Phys. Usp. 56 (2013) 1155 [arXiv:1406.0841].

[33] V.I. Dokuchaev, Spin and mass of the nearest supermassive black hole, Gen. Relativ. Grav. 46 (2014) 1832 [arXiv:1306.2033].

[34] V.I. Dokuchaev and Yu.N. Eroshenko, Weighing of the Dark Matter at the Center of the Galaxy, JETP Lett. 101 (2015) 777 [arXiv:1508.05725].

– 10 –

[35] V.I. Dokuchaev and Yu.N. Eroshenko, Physical laboratory at the center of the Galaxy, Phys. Usp. 58 (2015) 772 [arXiv:1512.02943]. [36] A. Herrera-Aguilar and U. Nucamendi, Kerr black hole parameters in terms of red/blue shifts of photons emitted by geodesic particles, Phys. Rev. D 92 (2015) 045024 [arXiv:1506.05182]. [37] R. Becerril, S. Valdez-Alvarado and U. Nucamendi, Obtaining mass parameters of compact objects from red-blue shifts emitted by geodesic particles around them, Phys. Rev. D 94 (2016) 124024 [arXiv:1610.01718]. [38] C.M. Will and M. Maitra, Relativistic orbits around spinning supermassive black holes. Secular evolution to 4.5 post-Newtonian order, Phys. Rev. D 95 (2017) 064003 [arXiv:1611.06931]. [39] F. Ferrer, A. Medeiros da Rosa and C.M. Will Dark matter spikes in the vicinity of Kerr black holes, Phys. Rev. D 96 (2017) 083014 [arXiv:1707.06302]. [40] C. Goddi, H. Falcke, M. Kramer et al., BlackHoleCam: fundamental physics of the Galactic center Int. J. Mod. Phys. D 26 (2017) 1730001 [arXiv:1606.08879]. [41] N.S. Kardashev, I.D. Novikov, V.N. Lukash et al. Review of scientific topics for Millimetron space observatory, Phys. Usp. (2014) 57 1199 [arXiv:1502.06071]. [42] B. Carter, Global structure of the Kerr family of gravitational fields, Phys. Rev. 174 (1968) 1559. [43] F. de Felice, Equatorial geodesic motion in the gravitational field of a rotating source, Nuovo Cim. 57B (1968) 351 [44] J.M. Bardeen, W.H. Press and S.A. Teukolsky, Rotating black holes: locally nonrotating frames, energy extraction, and scalar synchrotron radiation, Astrophys. J. 178 (1972) 347. [45] C.W. Misner, K.S. Thorne and J.A. Wheeler, Gravitation, San Francisco, CA: Freeman (1973), pg. 901. [46] R.H. Boyer and R.W. Lindquist, Maximal analytic extension of the Kerr Metric, J. Math. Phys. 8 (1967) 265. [47] S.E. Gralla, A.P. Porfyriadis and N. Warburton, Particle on the innermost stable circular orbit of a rapidly spinning black hole, Phys. Rev. D 92 (2015) 064029 [arXiv:1506.08496]. [48] S.E. Gralla, A. Lupsasca and A. Strominger, Near-horizon Kerr magnetosphere, Phys. Rev. D 93 (2016) 104041 [arXiv:1602.01833]. [49] S.E. Gralla, A. Zimmerman and P. Zimmerman, Transient Instability of Rapidly Rotating Black Holes, Phys. Rev. D 94 (2016) 084017 [arXiv:1608.04739]. [50] A.P. Porfyriadis, Y. Shi and A. Strominger, Photon emission near extreme Kerr black holes, Phys. Rev. D 95 (2017) 064009 [arXiv:1607.06028].

[51] S.E. Gralla, A. Lupsasca and A. Strominger, Observational signature of high spin at the Event Horizon Telescope, Mon. Not. R. Astron. Soc. 475 (2018) 3829 [ arXiv:1710.11112].

[52] V.I. Dokuchaev and N.O. Nazarova, Gravitational lensing of a star by rotating black hole, JETP Letters 106 (2017) 637 [arXiv:1802.00817].

[53] https://youtu.be/P6DneV0vk7U [54] C.T. Cunnungham and J.M. Bardeen, The optical appearance of a star orbiting an extreme Kerr black hole, Astrophys. J. 183 (1973) 237. [55] https://youtu.be/fps-3frL0AM [56] http://rantonels.github.io/starless/

 

猜你喜欢

转载自blog.csdn.net/yuanmeng001/article/details/89507583