洛谷 P5293 [HNOI2019]白兔之舞 单位根反演+fft

版权声明:2333 https://blog.csdn.net/liangzihao1/article/details/89325710

题目:
https://www.luogu.org/problemnew/show/P5293

分析:
f [ t ] f[t] 为余数为 t t 的答案。
考虑走 i i 步的贡献,
f [ t ] = i = 0 L [ i   m o d   k = = t ] ( L i ) W ( x , y ) i f[t]=\sum_{i=0}^{L}[i\ mod\ k==t]\binom{L}{i}W^i_{(x,y)}
其中 W i W^i 表示原矩阵的 i i 次幂。
根据单位根反演, [ k n ] = 1 k i = 0 k 1 ( w k n ) i [k|n]=\frac{1}{k}*\sum_{i=0}^{k-1}(w_k^n)^i
证明还是很显然,当 k n k|n 是,每一个单位复根都是 1 1 ,而如果不成立,不同的单位复根会相互抵消。
那么
f [ t ] = i = 0 L 1 k j = 0 k 1 ( w k i t ) j ( L i ) W ( x , y ) i f[t]=\sum_{i=0}^{L}\frac{1}{k}\sum_{j=0}^{k-1}(w_k^{i-t})^j*\binom{L}{i}W^i_{(x,y)}
= 1 k j = 0 k 1 w k j t i = 0 L w k j i ( L i ) W ( x , y ) i =\frac{1}{k}*\sum_{j=0}^{k-1}w_k^{-jt}\sum_{i=0}^{L}w_k^{j*i}*\binom{L}{i}W^i_{(x,y)}
后面就是一个二项式 ( x + y ) n (x+y)^n 的形式,
f [ t ] = 1 k j = 0 k 1 w k j t ( w k j W + I ) ( x , y ) L f[t]=\frac{1}{k}*\sum_{j=0}^{k-1}w_k^{-jt}(w_k^j*W+I)^L_{(x,y)}
其中 I I 是一个对角线为1,其他为 0 0 的矩阵,设 a j = ( w k j W + I ) ( x , y ) L a_j=(w_k^j*W+I)^L_{(x,y)}
答案就是
f [ t ] = 1 k j = 0 k 1 w k j t a j f[t]=\frac{1}{k}*\sum_{j=0}^{k-1}w_k^{-jt}*a_j
容易发现,上面的式子相当于求一次逆的fft。对于 k = 2 p k=2^p 的可以解决。
因为 j t = ( j + t 2 ) + ( j 2 ) + ( t 2 ) -jt=-\binom{j+t}{2}+\binom{j}{2}+\binom{t}{2} 。上式可以化成一个减卷积形式,直接任意模数fft解决即可。

代码:

// luogu-judger-enable-o2
#include <iostream>
#include <cstdio>
#include <cmath>
#include <algorithm>
#define LL long long

const int maxn=4e5+7;
const double pi=acos(-1);

using namespace std;

int n,k,L,x,y,len,cnt;
int p[maxn];
LL mod,G;
LL f[maxn],g[maxn],r[maxn],wk[maxn];

struct matrix{
    LL a[4][4];
}A,B,C;

struct rec{
    double x,y;
}a[maxn],b[maxn],w[maxn],dfta[maxn],dftb[maxn],dftc[maxn],dftd[maxn];

rec operator +(rec a,rec b)
{
    return (rec){a.x+b.x,a.y+b.y};
}

rec operator -(rec a,rec b)
{
    return (rec){a.x-b.x,a.y-b.y};
}

rec operator *(rec a,rec b)
{
    return (rec){a.x*b.x-a.y*b.y,a.x*b.y+a.y*b.x};
}

rec operator !(rec a)
{
    return (rec){a.x,-a.y};
}

matrix operator *(matrix a,matrix b)
{
    matrix c;
    for (int i=1;i<=n;i++)
    {
        for (int j=1;j<=n;j++) c.a[i][j]=0;
    }
    for (int k=1;k<=n;k++)
    {
        for (int i=1;i<=n;i++)
        {
            for (int j=1;j<=n;j++)
            {
                c.a[i][j]=(c.a[i][j]+a.a[i][k]*b.a[k][j]%mod)%mod;
            }
        }
    }
    return c;
}


void divide(int x)
{
    for (int i=2;i<=trunc(sqrt(x));i++)
    {
        if (x%i==0)
        {
            p[++cnt]=i;
            while (x%i==0) x/=i;
        }
    }
    if (x>1) p[++cnt]=x;
}

LL ksm(LL x,LL y)
{
    if (y==0) return 1;
    if (y==1) return x;
    LL c=ksm(x,y/2);
    c=(c*c)%mod;
    if (y%2==1) c=(c*x)%mod;
    return c;
}

void findroot(int x)
{
    for (int i=2;i<x;i++)
    {
        int flag=0;
        for (int j=1;j<=cnt;j++)
        {
            if (ksm(i,(x-1)/p[j])==1)
            {
                flag=1;
                break;
            }
        }
        if (!flag)
        {
            G=i;
            return;
        }
    }
}

void power(int k)
{
    if (k==1)
    {
        C=B;
        return;
    }
    power(k/2);
    C=C*C;
    if (k&1) C=C*B;
}

void fft(rec *a,LL f)
{
    for (LL i=0;i<len;i++)
    {
        if (i<r[i]) swap(a[i],a[r[i]]);
    }
    w[0]=(rec){1,0};
    for (LL i=2;i<=len;i*=2)
    {
        rec wn=(rec){cos(2*pi/i),f*sin(2*pi/i)};
        for (LL j=i/2;j>=0;j-=2) w[j]=w[j/2];
        for (LL j=1;j<i/2;j+=2) w[j]=w[j-1]*wn;
        for (LL j=0;j<len;j+=i)
        {
            for (LL k=0;k<i/2;k++)
            {
                rec u=a[j+k],v=a[j+k+i/2]*w[k];
                a[j+k]=u+v;
                a[j+k+i/2]=u-v;
            }
        }
    }
}

void init(LL len)
{
    LL k=trunc(log(len+0.5)/log(2));
    for (LL i=0;i<len;i++)
    {
        r[i]=(r[i>>1]>>1)|((i&1)<<(k-1));
    }
}

void FFT(LL *x,LL *y,LL *z,LL n,LL m)
{   
    len=1;
    while (len<(n+m-1)) len*=2;
    init(len);
    for (LL i=0;i<len;i++)
    {
        LL A,B;
        if (i<n) A=x[i]%mod; else A=0;
        if (i<m) B=y[i]%mod; else B=0;
        a[i]=(rec){(double)(A>>15),(double)(A&32767)};
        b[i]=(rec){(double)(B>>15),(double)(B&32767)};
    }
    fft(a,1); fft(b,1);
    for (LL i=0;i<len;i++)
    {
        LL j=(len-i)&(len-1);
        rec da,db,dc,dd;
        da=(a[i]+(!a[j]))*(rec){0.5,0};
        db=(a[i]-(!a[j]))*(rec){0,-0.5};
        dc=(b[i]+(!b[j]))*(rec){0.5,0};
        dd=(b[i]-(!b[j]))*(rec){0,-0.5};
        dfta[i]=da*dc;
        dftb[i]=da*dd;
        dftc[i]=db*dc;
        dftd[i]=db*dd;
    }
    for (LL i=0;i<len;i++)
    {
        a[i]=dfta[i]+dftb[i]*(rec){0,1};
        b[i]=dftc[i]+dftd[i]*(rec){0,1};
    }
    fft(a,-1); fft(b,-1);
    for (LL i=0;i<len;i++)
    {
        LL da,db,dc,dd;
        da=(LL)(a[i].x/len+0.5)%mod;
        db=(LL)(a[i].y/len+0.5)%mod;
        dc=(LL)(b[i].x/len+0.5)%mod;
        dd=(LL)(b[i].y/len+0.5)%mod;
        z[i]=((da<<30)%mod+((db+dc)<<15)%mod+dd)%mod;
    }
}

int getinv(int p)
{
    if (!p) return p;
    return k-p;
}

void solve()
{
    divide(mod-1);
    findroot(mod);
    wk[0]=1,wk[1]=ksm(G,(mod-1)/k);
    for (int i=2;i<k;i++) wk[i]=wk[i-1]*wk[1]%mod;  
    for (int i=0;i<k;i++)
    {
        for (int j=1;j<=n;j++)
        {
            for (int l=1;l<=n;l++) B.a[j][l]=A.a[j][l]*wk[i]%mod;
            B.a[j][j]=(B.a[j][j]+1)%mod;
        }
        power(L);     
        f[i]=C.a[x][y]*ksm(wk[getinv((LL)i*(LL)(i-1)/2%k)],mod-2)%mod;
    }        
    for (int i=0;i<2*k;i++) g[i]=wk[getinv((LL)i*(LL)(i-1)/2%k)];   
    reverse(g,g+2*k);
    FFT(f,g,g,k,2*k);
    reverse(g,g+2*k);
    LL inv=ksm(k,mod-2);
    for (int i=0;i<k;i++) printf("%lld\n",g[i]*inv%mod*ksm(wk[getinv((LL)i*(LL)(i-1)/2%k)],mod-2)%mod);
}

int main()
{
    scanf("%d%d%d%d%d%lld",&n,&k,&L,&x,&y,&mod);
    for (int i=1;i<=n;i++)
    {
        for (int j=1;j<=n;j++) scanf("%lld",&A.a[i][j]);
    }   
    solve();
}

猜你喜欢

转载自blog.csdn.net/liangzihao1/article/details/89325710