linux内存管理源码分析

版权声明:本文为博主原创文章,未经博主允许不得转载。 https://blog.csdn.net/THEANARKH/article/details/89049210
/*
 *  linux/mm/memory.c
 *
 *  (C) 1991  Linus Torvalds
 */

/*
 * demand-loading started 01.12.91 - seems it is high on the list of
 * things wanted, and it should be easy to implement. - Linus
 */

/*
 * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
 * pages started 02.12.91, seems to work. - Linus.
 *
 * Tested sharing by executing about 30 /bin/sh: under the old kernel it
 * would have taken more than the 6M I have free, but it worked well as
 * far as I could see.
 *
 * Also corrected some "invalidate()"s - I wasn't doing enough of them.
 */

#include <signal.h>

#include <asm/system.h>

#include <linux/sched.h>
#include <linux/head.h>
#include <linux/kernel.h>

volatile void do_exit(long code);

static inline volatile void oom(void)
{
	printk("out of memory\n\r");
	do_exit(SIGSEGV);
}
// 置cr3为0,把0赋给eax,eax赋给cr3,cr3是保存页目录基地址的
#define invalidate() \
__asm__("movl %%eax,%%cr3"::"a" (0))

/* these are not to be changed without changing head.s etc */
#define LOW_MEM 0x100000
#define PAGING_MEMORY (15*1024*1024)
// 多少页,>>12即除以4kb
#define PAGING_PAGES (PAGING_MEMORY>>12)
// 给定一个地址,算出在哪一页
#define MAP_NR(addr) (((addr)-LOW_MEM)>>12)
#define USED 100

#define CODE_SPACE(addr) ((((addr)+4095)&~4095) < \
current->start_code + current->end_code)

static long HIGH_MEMORY = 0;
// 把一页的内容从from复制到to
#define copy_page(from,to) \
__asm__("cld ; rep ; movsl"::"S" (from),"D" (to),"c" (1024):"cx","di","si")

static unsigned char mem_map [ PAGING_PAGES ] = {0,};

/*
 * Get physical address of first (actually last :-) free page, and mark it
 * used. If no free pages left, return 0.
 */
unsigned long get_free_page(void)
{
register unsigned long __res asm("ax");
/*
	清方向,查找和al(0)相等的项,scab是以ecx为循环次数,
	edi为首地址开始循环对比。知道找到等于0或ecx为0结束循环。
	找到的话CF等于1。jne 1f说明cf等于0的时候跳到标签1处,即找不到,
	找到后对一页的内容清0
*/
__asm__("std ; repne ; scasb\n\t"
	"jne 1f\n\t"
	"movb $1,1(%%edi)\n\t"
	"sall $12,%%ecx\n\t"
	"addl %2,%%ecx\n\t"
	"movl %%ecx,%%edx\n\t"
	"movl $1024,%%ecx\n\t"
	"leal 4092(%%edx),%%edi\n\t"
	"rep ; stosl\n\t"
	"movl %%edx,%%eax\n"
	"1:"
	// a即eax,是输入也是输出,输入时值是0,输出时把eax赋给__res
	:"=a" (__res)
	:"0" (0),"i" (LOW_MEM),"c" (PAGING_PAGES),// c即ecx,最多遍历的次数
	// D是edi,即从后往前遍历
	"D" (mem_map+PAGING_PAGES-1)
	:"di","cx","dx");
return __res;
}

/*
 * Free a page of memory at physical address 'addr'. Used by
 * 'free_page_tables()'
 */
// addr:要释放的物理地址,修改标记位即可,再次分配的时候会清0
void free_page(unsigned long addr)
{
	if (addr < LOW_MEM) return;
	if (addr >= HIGH_MEMORY)
		panic("trying to free nonexistent page");
	// 减去低端内存,得到主内存首地址
	addr -= LOW_MEM;
	// 算出第几页
	addr >>= 12;
	// 引用数减一,不为0则说明还有进程引用,否则置0
	if (mem_map[addr]--) return;
	mem_map[addr]=0;
	panic("trying to free free page");
}

/*
 * This function frees a continuos block of page tables, as needed
 * by 'exit()'. As does copy_page_tables(), this handles only 4Mb blocks.
 */
// from是线性地址。释放from开始,连续的n个大小为4MB的页面对应的物理地址。最后释放页表、页目录项
int free_page_tables(unsigned long from,unsigned long size)
{
	unsigned long *pg_table;
	unsigned long * dir, nr;
	// 判断是否按4MB对齐
	if (from & 0x3fffff)
		panic("free_page_tables called with wrong alignment");
	if (!from)
		panic("Trying to free up swapper memory space");
	// 算出size包含多少个MB,比如size是0 - 1>>22,则计算机后是1
	size = (size + 0x3fffff) >> 22;
	/*
		页目录在地址0开始的地方,首先右移得到页目录索引,
		根据索引得到页目录项内容,因为页目录项的内容占4个字节,
		其中高20位是页表地址,低12位是标记位,,所以要乘以4得到
		from对应的页目录项的地址。即dir = from >> 22 << 2 = from >> 20,
		但是代码里是直接右移20位,所以需要和0xffc与,把低两位置0,最后得到from
		对应的页目录项的地址
	*/
	dir = (unsigned long *) ((from>>20) & 0xffc); /* _pg_dir = 0 */
	for ( ; size-->0 ; dir++) {
		// 低位是1说明该页目录项有效
		if (!(1 & *dir))
			continue;
		// *dir为页表首地址,与0xfffff000是因为高二十位是有效地址,低12位是标记位
		pg_table = (unsigned long *) (0xfffff000 & *dir);
		// 释放每个页表指向的物理地址
		for (nr=0 ; nr<1024 ; nr++) {
			// 页表是否有效,有效则释放*pg_table指向物理地址,以4kb对齐
			if (1 & *pg_table)
				// 与0xfffff000是因为高二十位是有效地址,低12位是标记位 
				free_page(0xfffff000 & *pg_table);
			// 置页表无效
			*pg_table = 0;
			// 下一个页表
			pg_table++;
		}
		// 释放页表占据的物理地址
		free_page(0xfffff000 & *dir);
		// 置页目录项为无效
		*dir = 0;
	}
	invalidate();
	return 0;
}

/*
 *  Well, here is one of the most complicated functions in mm. It
 * copies a range of linerar addresses by copying only the pages.
 * Let's hope this is bug-free, 'cause this one I don't want to debug :-)
 *
 * Note! We don't copy just any chunks of memory - addresses have to
 * be divisible by 4Mb (one page-directory entry), as this makes the
 * function easier. It's used only by fork anyway.
 *
 * NOTE 2!! When from==0 we are copying kernel space for the first
 * fork(). Then we DONT want to copy a full page-directory entry, as
 * that would lead to some serious memory waste - we just copy the
 * first 160 pages - 640kB. Even that is more than we need, but it
 * doesn't take any more memory - we don't copy-on-write in the low
 * 1 Mb-range, so the pages can be shared with the kernel. Thus the
 * special case for nr=xxxx.
 */
// z在fork的时候调用,复制父进程页表。把线性地址from开始的n个MB地址对应的页表和页目录项的内容复制给to对应的页表和页目录项
int copy_page_tables(unsigned long from,unsigned long to,long size)
{
	unsigned long * from_page_table;
	unsigned long * to_page_table;
	unsigned long this_page;
	unsigned long * from_dir, * to_dir;
	unsigned long nr;
	// 4MB对齐
	if ((from&0x3fffff) || (to&0x3fffff))
		panic("copy_page_tables called with wrong alignment");
	// 源页目录项物理地址
	from_dir = (unsigned long *) ((from>>20) & 0xffc); /* _pg_dir = 0 */
	// 目的目录项物理地址
	to_dir = (unsigned long *) ((to>>20) & 0xffc);
	// 多少个MB
	size = ((unsigned) (size+0x3fffff)) >> 22;
	for( ; size-->0 ; from_dir++,to_dir++) {
		// 目的页目录项已经指向了一个有效的页表
		if (1 & *to_dir)
			panic("copy_page_tables: already exist");
		// 源目录项没有指向有效的页表
		if (!(1 & *from_dir))
			continue;
		// 获取页表地址
		from_page_table = (unsigned long *) (0xfffff000 & *from_dir);
		// 分配新的一页物理内存
		if (!(to_page_table = (unsigned long *) get_free_page()))
			return -1;	/* Out of memory, see freeing */
		// 把新分配的物理地址记录在页表中
		*to_dir = ((unsigned long) to_page_table) | 7;
		// 复制的页数,即页表项数
		nr = (from==0)?0xA0:1024;
		for ( ; nr-- > 0 ; from_page_table++,to_page_table++) {
			// *from_page_table是页表项内容
			this_page = *from_page_table;
			// 该页表项没有指向有效的物理地址,则不需要复制
			if (!(1 & this_page))
				continue;
			/*
				置低位的第二位为0,即置该页表项对应的物理内存为不可写,
				可读、可执行,因为有多个进程共享该物理页面,即copy_on_write
			*/
			this_page &= ~2;
			// 复制源页表项内容到目的页表项 
			*to_page_table = this_page;
			// 高于低端地址,即用户进程
			if (this_page > LOW_MEM) {
				// 保存当前的页表项内容
				*from_page_table = this_page;
				/*
					this_page应该只取高20位,因为高20位才是有效地址(再加低位12个0即物理地址)
					但是,LOW_MEN的低12位都是0,所以不影响计算。
				*/
				this_page -= LOW_MEM;
				this_page >>= 12;
				// 算出物理地址对应的页偏移后,把mem_map对应的位加1,代表有多个进程在使用该物理地址
				mem_map[this_page]++;
			}
		}
	}
	// 刷新tlb
	invalidate();
	return 0;
}

/*
 * This function puts a page in memory at the wanted address.
 * It returns the physical address of the page gotten, 0 if
 * out of memory (either when trying to access page-table or
 * page.)
 */
// page是物理地址,address是线性地址。建立物理地址和线性地址的关联,即给页表和页目录项赋值
unsigned long put_page(unsigned long page,unsigned long address)
{
	unsigned long tmp, *page_table;

/* NOTE !!! This uses the fact that _pg_dir=0 */

	if (page < LOW_MEM || page >= HIGH_MEMORY)
		printk("Trying to put page %p at %p\n",page,address);
	// page对应的物理页面没有被分配则说明有问题
	if (mem_map[(page-LOW_MEM)>>12] != 1)
		printk("mem_map disagrees with %p at %p\n",page,address);
	// 计算页目录项
	page_table = (unsigned long *) ((address>>20) & 0xffc);
	// 页目录项已经指向了一个有效的页表
	if ((*page_table)&1)
		// 算出页表首地址,*page_table的高20位是有效地址
		page_table = (unsigned long *) (0xfffff000 & *page_table);
	else {
		// 页目录项还没有指向有效的页表
		if (!(tmp=get_free_page()))
			return 0;
		// tmp为页表的物理地址,或7代表页面是用户级、可读、写、执行、有效
		*page_table = tmp|7;
		// 页目录项指向页表的物理地址
		page_table = (unsigned long *) tmp;
	}
	/* address是32位,右移12为变成20位,再与3ff就是取得低10位,
		即address在页表中的索引,或7代表该页面是用户级、可读、写、执行、有效
	*/
	page_table[(address>>12) & 0x3ff] = page | 7;
/* no need for invalidate */
	// 返回线性地址
	return page;
}
// 共享的页面被写入的时候会执行该函数。该函数申请新的一页物理地址,解除共享状态
void un_wp_page(unsigned long * table_entry)
{
	unsigned long old_page,new_page;
	// table_entry是页表项地址,算出该页的物理首地址
	old_page = 0xfffff000 & *table_entry;
	// 该地址对应的页引用数为1,可以直接修改内容,置可写标记位(第二位)
	if (old_page >= LOW_MEM && mem_map[MAP_NR(old_page)]==1) {
		*table_entry |= 2;
		invalidate();
		return;
	}
	// 分配一个新的页
	if (!(new_page=get_free_page()))
		oom();
	// 页的引用数减一
	if (old_page >= LOW_MEM)
		mem_map[MAP_NR(old_page)]--;
	// 修改页表项的内容,使其指向新分配的内存页,置用户级、有效、可读写、可执行标记位
	*table_entry = new_page | 7;
	// 刷新tlb
	invalidate();
	// 把数据赋值到新分配的页上
	copy_page(old_page,new_page);
}	

/*
 * This routine handles present pages, when users try to write
 * to a shared page. It is done by copying the page to a new address
 * and decrementing the shared-page counter for the old page.
 *
 * If it's in code space we exit with a segment error.
 */

void do_wp_page(unsigned long error_code,unsigned long address)
{
#if 0
/* we cannot do this yet: the estdio library writes to code space */
/* stupid, stupid. I really want the libc.a from GNU */
	if (CODE_SPACE(address))
		do_exit(SIGSEGV);
#endif
	/*
		address为线性地址,
		address>>10 = address>>12<<2,得到页表项的地址,
		address>>20 = address>>22<<2,得到页目录项地址,
		页目录项里存着页表地址+页表偏移得到页表项地址
	*/
	un_wp_page((unsigned long *)
		(((address>>10) & 0xffc) + (0xfffff000 &
		*((unsigned long *) ((address>>20) &0xffc)))));

}
// address是线性地址,判断页面是否可写,不可写则新申请页面,解除共享状态
void write_verify(unsigned long address)
{
	unsigned long page;
	// address>>20 = address>>22<<2,page指向目录项内容,if判断页目录项是否指向了有效的页表项
	if (!( (page = *((unsigned long *) ((address>>20) & 0xffc)) )&1))
		return;
	page &= 0xfffff000;// 取页目录项内容的高二十位,即页表的物理首地址
	page += ((address>>10) & 0xffc); // 页表首地址+页表项偏移,算出页表项的地址
	// 取出页表项的内容 & 3,即判断标记位是不是01,即不可写,则解除共享
	if ((3 & *(unsigned long *) page) == 1)  /* non-writeable, present */
		un_wp_page((unsigned long *) page);
	return;
}
// 给address分配一个新的页,并且把页对应的物理地址存储在页面项中
void get_empty_page(unsigned long address)
{
	unsigned long tmp;

	if (!(tmp=get_free_page()) || !put_page(tmp,address)) {
		free_page(tmp);		/* 0 is ok - ignored */
		oom();
	}
}

/*
 * try_to_share() checks the page at address "address" in the task "p",
 * to see if it exists, and if it is clean. If so, share it with the current
 * task.
 *
 * NOTE! This assumes we have checked that p != current, and that they
 * share the same executable.
 */

static int try_to_share(unsigned long address, struct task_struct * p)
{
	unsigned long from;
	unsigned long to;
	unsigned long from_page;
	unsigned long to_page;
	unsigned long phys_addr;
	/*
		address是距离start_code的偏移。这里算出偏移在页目录里的偏移,
		然后加上start_code的偏移就得到address在页目录里的绝对偏移
	*/
	from_page = to_page = ((address>>20) & 0xffc);
	// p进程的代码开始地址(线性地址),取得p进程的页目录项地址
	from_page += ((p->start_code>>20) & 0xffc);
	// 取得当前进程的页目录项地址
	to_page += ((current->start_code>>20) & 0xffc);
/* is there a page-directory at from? */
	// from是页表的地址和标记位
	from = *(unsigned long *) from_page;
	// 没有指向有效的页表则返回
	if (!(from & 1))
		return 0;
	// 取出页表地址
	from &= 0xfffff000;
	// 算出address对应的页表项地址
	from_page = from + ((address>>10) & 0xffc);
	// 页表项的内容,包括物理地址和标记位信息
	phys_addr = *(unsigned long *) from_page;
/* is the page clean and present? */
	// 是否有效和是否是脏的,如果不是有效并且干净的则返回
	if ((phys_addr & 0x41) != 0x01)
		return 0;
	// 取出物理地址的页首地址
	phys_addr &= 0xfffff000;
	if (phys_addr >= HIGH_MEMORY || phys_addr < LOW_MEM)
		return 0;
	// 目的页目录项内容
	to = *(unsigned long *) to_page;
	// 目的页目录项是否指向有效的页表
	if (!(to & 1))
		// 没有则新分配一页,并初始化标记位
		if (to = get_free_page())
			*(unsigned long *) to_page = to | 7;
		else
			oom();
	// 取得页表地址
	to &= 0xfffff000;
	// 取得address对应的页表项地址
	to_page = to + ((address>>10) & 0xffc);
	// 是否指向了有效的物理页
	if (1 & *(unsigned long *) to_page)
		panic("try_to_share: to_page already exists");
/* share them: write-protect */
	// 标记位不可写
	*(unsigned long *) from_page &= ~2;
	// 把address对应的源页表项内容复制到目的页表项中
	*(unsigned long *) to_page = *(unsigned long *) from_page;
	// 使tlb失效
	invalidate();
	// 算出页数,引用数加一
	phys_addr -= LOW_MEM;
	phys_addr >>= 12;
	mem_map[phys_addr]++;
	return 1;
}

/*
 * share_page() tries to find a process that could share a page with
 * the current one. Address is the address of the wanted page relative
 * to the current data space.
 *
 * We first check if it is at all feasible by checking executable->i_count.
 * It should be >1 if there are other tasks sharing this inode.
 */
static int share_page(unsigned long address)
{
	struct task_struct ** p;

	if (!current->executable)
		return 0;
	if (current->executable->i_count < 2)
		return 0;
	for (p = &LAST_TASK ; p > &FIRST_TASK ; --p) {
		if (!*p)
			continue;
		if (current == *p)
			continue;
		if ((*p)->executable != current->executable)
			continue;
		// 找到一个不是当前进程,但都执行了同一个可执行文件的进程
		if (try_to_share(address,*p))
			return 1;
	}
	return 0;
}
// 缺页处理,进程的内容还没有加载到内存,访问的时候导致缺页异常
void do_no_page(unsigned long error_code,unsigned long address)
{
	int nr[4];
	unsigned long tmp;
	unsigned long page;
	int block,i;
	// 取得线性地址对应的页首地址 
	address &= 0xfffff000;
	// 算出离代码段偏移
	tmp = address - current->start_code;
	// tmp大于等于end_data说明是访问堆或者栈的空间时发生的缺页,直接申请一页
	if (!current->executable || tmp >= current->end_data) {
		get_empty_page(address);
		return;
	}
	// 是否有进程已经使用了
	if (share_page(tmp))
		return;
	if (!(page = get_free_page()))
		oom();
/* remember that 1 block is used for header */
	// 算出要读的硬盘块数,但是最多读四块
	block = 1 + tmp/BLOCK_SIZE;
	// 查找文件前4块对应的硬盘号
	for (i=0 ; i<4 ; block++,i++)
		nr[i] = bmap(current->executable,block);
	// 从硬盘读四块数据进来
	bread_page(page,current->executable->i_dev,nr);
	i = tmp + 4096 - current->end_data;
	tmp = page + 4096;
	while (i-- > 0) {
		tmp--;
		*(char *)tmp = 0;
	}
	if (put_page(page,address))
		return;
	free_page(page);
	oom();
}
// 系统初始化的时候初始化管理内存的数据结构
void mem_init(long start_mem, long end_mem)
{
	int i;

	HIGH_MEMORY = end_mem;
	// 置全部页面为已使用
	for (i=0 ; i<PAGING_PAGES ; i++)
		mem_map[i] = USED;
	// 主存首地址对应的索引
	i = MAP_NR(start_mem);
	// 主存的页数
	end_mem -= start_mem;
	end_mem >>= 12;
	// 把主存的页置为未使用
	while (end_mem-->0)
		mem_map[i++]=0;
}

void calc_mem(void)
{
	int i,j,k,free=0;
	long * pg_tbl;
	for(i=0 ; i<PAGING_PAGES ; i++)
		if (!mem_map[i]) free++;
	printk("%d pages free (of %d)\n\r",free,PAGING_PAGES);
	for(i=2 ; i<1024 ; i++) {
		if (1&pg_dir[i]) {
			pg_tbl=(long *) (0xfffff000 & pg_dir[i]);
			for(j=k=0 ; j<1024 ; j++)
				if (pg_tbl[j]&1)
					k++;
			printk("Pg-dir[%d] uses %d pages\n",i,k);
		}
	}
}

猜你喜欢

转载自blog.csdn.net/THEANARKH/article/details/89049210