sysfs Kobject

Kobject结构定义为:
struct kobject {
char * k_name; 指向设备名称的指针
char name[KOBJ NAME LEN]; 设备名称
struct kref kref; 对象引用计数
struct list head entry; 挂接到所在kset中去的单元
struct kobject * parent; 指向父对象的指针
struct kset * kset; 所属kset的指针
struct kobj_type * ktype; 指向其对象类型描述符的指针
struct dentry * dentry; sysfs文件系统中与该对象对应的文件节点路径指针
struct sysfs_dirent *sd;
};
每个在内核中注册的kobject对象都对应于sysfs文件系统中的一个目录

 Kobj type  
struct kobj_type {
void (*release)(struct kobject *);
struct sysfs_ops * sysfs_ops;
struct attribute ** default_attrs;
};
Kobj type数据结构包含三个域:一个release方法用于释放kobject占用的资源;一个sysfs ops指针指向sysfs操作表和一个sysfs文件系统缺省属性列表。Sysfs操作表包括两个函数store()和show()。当用户态读取属性 时,show()函数被调用,该函数编码指定属性值存入buffer中返回给用户态;而store()函数用于存储用户态传入的属性值。

struct attribute {
char * name;
struct module * owner;
mode_t mode;
}
如果说kset是管理kobject 的集合,那么subsystem 就是管理kset 的集合。
3. kset  
kset最重要的是建立上层(sub-system)和下层的 (kobject)的关联性。kobject 也会利用它了分辨自已是属于那一個类型,然後在/sys 下建立正确的目录位置。而kset 的优先权比较高,kobject会利用自已的*kset 找到自已所属的kset,並把*ktype 指定成該kset下的ktype,除非沒有定义kset,才会用ktype來建立关系。Kobject通过kset组织成层次化的结构,kset是具有相 同类型的kobject的集合,在内核中用kset数据结构表示,定义为:
struct kset {
struct subsystem * subsys; 所在的subsystem的指针
struct kobj type * ktype; 指向该kset对象类型描述符的指针
struct list head list; 用于连接该kset中所有kobject的链表头
struct kobject kobj; 嵌入的kobject
struct kset hotplug ops * hotplug ops; 指向热插拔操作表的指针
};
4 subsystem  
如果說kset 是管理kobject 的集合,同理,subsystem 就是管理kset 的集合。它描述系统中某一类设备子系统,如block subsys表示所有的块设备,对应于sysfs文件系统中的block目录。类似的,devices subsys对应于sysfs中的devices目录,描述系统中所有的设备。Subsystem由struct subsystem数据结构描述,定义为:
struct subsystem {
struct kset kset; 内嵌的kset对象
struct rw semaphore rwsem; 互斥访问信号量
};



1 bus  
系统中总线由struct bus_type描述,定义为:
struct bus_type {
char * name; 总线类型的名称
struct subsystem subsys; 与该总线相关的subsystem
struct kset drivers; 所有与该总线相关的驱动程序集合
struct kset devices; 所有挂接在该总线上的设备集合
struct bus attribute * bus_attrs; 总线属性
struct device attribute * dev_attrs; 设备属性
struct driver attribute * drv_attrs; 驱动程序属性
int (*match)(struct device * dev, struct device_driver * drv);
int (*hotplug) (struct device *dev, char **envp, int num_envp, char *buffer, int buffer_size);
int (*suspend)(struct device * dev, u32 state);
int (*resume)(struct device * dev);
};
每 个bus_type对象都内嵌一个subsystem对象,bus_subsys对象管理系统中所有总线类型的subsystem对象。每个 bus_type对象都对应/sys/bus目录下的一个子目录,如PCI总线类型对应于/sys/bus/pci。在每个这样的目录下都存在两个子目 录:devices和drivers(分别对应于bus type结构中的devices和drivers域)。其中devices子目录描述连接在该总线上的所有设备,而drivers目录则描述与该总线关联 的所有驱动程序。与device_driver对象类似,bus_type结构还包含几个函数(match()、hotplug()等)处理相应的热插 拔、即插即拔和电源管理事件

2 device  
系统中的任一设备在设备模型中都由一个device对象描述,其对应的数据结构struct device
定义为:
struct device {
struct list_head g_list;
struct list_head node;
struct list_head bus_list;
struct list_head driver_list;
struct list_head children;
struct device *parent;
struct kobject kobj;
char bus_id[BUS_ID_SIZE];
struct bus_type *bus;
struct device_driver *driver;
void *driver_data;
/* Several fields omitted */
};
g_list 将该device对象挂接到全局设备链表中,所有的device对象都包含在devices subsys中,并组织成层次结构。Node域将该对象挂接到其兄弟对象的链表中,而bus list则用于将连接到相同总线上的设备组织成链表,driver list则将同一驱动程序管理的所有设备组织为链表。此外,children域指向该device对象子对象链表头,parent域则指向父对象。 Device对象还内嵌一个kobject对象,用于引用计数管理并通过它实现设备层次结构。Driver域指向管理该设备的驱动程序对象,而 driver data则是提供给驱动程序的数据。Bus域描述设备所连接的
总线类型。

内核提供了相应的函数用于操作device对象。其中device_register()函数将一个新的device对象插入设备模型,并 自动在/sys/devices下创建一个对应的目录。device_unregister()完成相反的操作,注销设备对象。get_device() 和put_device()分别增加与减少设备对象的引用计数。通常device结构不单独使用,而是包含在更大的结构中作为一个子结构使用,比如描述 PCI设备的struct pci_dev,还有我们ldd_dev,其中的dev域就是一个device对象。



dentry->d_fsdata = sysfs_dirent  
dentry->d_inode = inode  
inode->i_private = sysfs_dirent

猜你喜欢

转载自blog.csdn.net/flyxiao28/article/details/80586080
今日推荐