[C++] 智能指针与内存管理

值语义与引用语义

值语义指的是对象的拷贝与原对象无关,比如int等类型就是值语义的,如下

int a = 10;
int b = a;

这里的a和b是不同的两个量,完全无关。
引用语义则是指两者存储的东西相同,将a赋值给b之后b只是a的一个引用,c++的iostream等就是引用语义。
然后c++和java等语言的一个很大的区别就是,c++的类默认是值语义的,比如下面一段程序

Person a = new Person();
Person b = a;

在java中意思很简单,就只生成了一个person对象,a和b存的只是一个引用。
c++中则不然,c++的话这一段的意思则是生成了两个person,先生成a,再把a拷贝给b,因为这里的Person是值语义的。
c++中要引用的话要这样写:

int a=1;
int &b=a;

问题来了,很多时候(几乎所有时候)我们都不希望我们的对象是可以复制的,这会导致浪费以及很多问题,一般来说,我们只要不去用copy constructor和assignment operator就不会出问题,但是我们还是希望我们的类是无法被拷贝的,这时候就有几种方法来确保这一点。
一种比较老套的做法是声明copy constructor和assignment operator,然后设置成private,但是这样的话这个类里的其他方法还是可能调用这个方法,不能在编译的时候发现问题。
而c++11中多了个新特性,可以用=delete来禁止编译器生成这两个函数,声明如下

class Singleton
{
private:
	Singleton();
	~Singleton();
	Singleton(const Singleton& st)=delete;//禁止生成该函数
	Singleton& operator=(const Singleton& st)=delete;//禁止生成该函数
}

这样一来如果这个类里有其他方法调用了这两个方法,就会在编译期间报错。
此外,还有一种办法可以解决这个问题,那就是让这个类继承自boost::noncopyable,即

class do_not_copy : boost::uncopyable
{...}

这种做法在OO编程的时候几乎总是正确的。


智能指针与内存管理

c++默认没有垃圾回收,不像c#与java等语言,我们需要关心类的释放,传统的指针如果不用了就delete掉是个好习惯,但是这样也可能导致很多问题,如果后面还有用就delete掉了,就会导致指针悬空,智能指针可以解决这个问题,智能指针会在作用域结束后自动释放,不再用程序员来操心释放的问题。

后面这一部分的原文是https://www.cnblogs.com/wxquare/p/4759020.html

理解智能指针需要从下面三个层次:

  1. 从较浅的层面看,智能指针是利用了一种叫做RAII(资源获取即初始化)的技术对普通的指针进行封装,这使得智能指针实质是一个对象,行为表现的却像一个指针。
  2. 智能指针的作用是防止忘记调用delete释放内存和程序异常的进入catch块忘记释放内存。另外指针的释放时机也是非常有考究的,多次释放同一个指针会造成程序崩溃,这些都可以通过智能指针来解决。
  3. 智能指针还有一个作用是把值语义转换成引用语义。

c++有四种智能指针, auto_ptr, shared_ptr, weak_ptr, unique_ptr 其中后三个是c++11支持,并且第一个已经被c++11弃用。
智能指针包含在头文件中。

shared_ptr的使用

shared_ptr多个指针指向相同的对象。shared_ptr使用引用计数,每一个shared_ptr的拷贝都指向相同的内存。每使用他一次,内部的引用计数加1,每析构一次,内部的引用计数减1,减为0时,自动删除所指向的堆内存。shared_ptr内部的引用计数是线程安全的,但是对象的读取需要加锁。

初始化。智能指针是个模板类,可以指定类型,传入指针通过构造函数初始化。也可以使用make_shared函数初始化。不能将指针直接赋值给一个智能指针,一个是类,一个是指针。例如std::shared_ptr p4 = new int(1);的写法是错误的
拷贝和赋值。拷贝使得对象的引用计数增加1,赋值使得原对象引用计数减1,当计数为0时,自动释放内存。后来指向的对象引用计数加1,指向后来的对象。
get函数获取原始指针
注意不要用一个原始指针初始化多个shared_ptr,否则会造成二次释放同一内存
注意避免循环引用,shared_ptr的一个最大的陷阱是循环引用,循环,循环引用会导致堆内存无法正确释放,导致内存泄漏。循环引用在weak_ptr中介绍。

#include <iostream>
#include <memory>

int main() {
    {
        int a = 10;
        std::shared_ptr<int> ptra = std::make_shared<int>(a);
        std::shared_ptr<int> ptra2(ptra); //copy
        std::cout << ptra.use_count() << std::endl;

        int b = 20;
        int *pb = &a;
        //std::shared_ptr<int> ptrb = pb;  //error
        std::shared_ptr<int> ptrb = std::make_shared<int>(b);
        ptra2 = ptrb; //assign
        pb = ptrb.get(); //获取原始指针

        std::cout << ptra.use_count() << std::endl;
        std::cout << ptrb.use_count() << std::endl;
    }
}
unique_ptr的使用

unique_ptr“唯一”拥有其所指对象,同一时刻只能有一个unique_ptr指向给定对象(通过禁止拷贝语义、只有移动语义来实现)。相比与原始指针unique_ptr用于其RAII的特性,使得在出现异常的情况下,动态资源能得到释放。unique_ptr指针本身的生命周期:从unique_ptr指针创建时开始,直到离开作用域。离开作用域时,若其指向对象,则将其所指对象销毁(默认使用delete操作符,用户可指定其他操作)。unique_ptr指针与其所指对象的关系:在智能指针生命周期内,可以改变智能指针所指对象,如创建智能指针时通过构造函数指定、通过reset方法重新指定、通过release方法释放所有权、通过移动语义转移所有权。

#include <iostream>
#include <memory>

int main() {
    {
        std::unique_ptr<int> uptr(new int(10));  //绑定动态对象
        //std::unique_ptr<int> uptr2 = uptr;  //不能賦值
        //std::unique_ptr<int> uptr2(uptr);  //不能拷貝
        std::unique_ptr<int> uptr2 = std::move(uptr); //轉換所有權
        uptr2.release(); //释放所有权
    }
    //超過uptr的作用域,內存釋放
}
weak_ptr的使用

weak_ptr是为了配合shared_ptr而引入的一种智能指针,因为它不具有普通指针的行为,没有重载operator*和->,它的最大作用在于协助shared_ptr工作,像旁观者那样观测资源的使用情况。weak_ptr可以从一个shared_ptr或者另一个weak_ptr对象构造,获得资源的观测权。但weak_ptr没有共享资源,它的构造不会引起指针引用计数的增加。使用weak_ptr的成员函数use_count()可以观测资源的引用计数,另一个成员函数expired()的功能等价于use_count()==0,但更快,表示被观测的资源(也就是shared_ptr的管理的资源)已经不复存在。weak_ptr可以使用一个非常重要的成员函数lock()从被观测的shared_ptr获得一个可用的shared_ptr对象, 从而操作资源。但当expired()==true的时候,lock()函数将返回一个存储空指针的shared_ptr。

#include <iostream>
#include <memory>

int main() {
    {
        std::shared_ptr<int> sh_ptr = std::make_shared<int>(10);
        std::cout << sh_ptr.use_count() << std::endl;

        std::weak_ptr<int> wp(sh_ptr);
        std::cout << wp.use_count() << std::endl;

        if(!wp.expired()){
            std::shared_ptr<int> sh_ptr2 = wp.lock(); //get another shared_ptr
            *sh_ptr = 100;
            std::cout << wp.use_count() << std::endl;
        }
    }
    //delete memory
}
循环引用

考虑一个简单的对象建模——家长与子女:a Parent has a Child, a Child knowshis/her Parent。在Java 里边很好写,不用担心内存泄漏,也不用担心空悬指针,只要正确初始化myChild 和myParent,那么Java 程序员就不用担心出现访问错误。一个handle 是否有效,只需要判断其是否non null。

public class Parent
{
  private Child myChild;
}
public class Child
{
  private Parent myParent;
}

在C++ 里边就要为资源管理费一番脑筋。如果使用原始指针作为成员,Child和Parent由谁释放?那么如何保证指针的有效性?如何防止出现空悬指针?这些问题是C++面向对象编程麻烦的问题,现在可以借助smart pointer把对象语义(pointer)转变为值(value)语义,shared_ptr轻松解决生命周期的问题,不必担心空悬指针。但是这个模型存在循环引用的问题,注意其中一个指针应该为weak_ptr。

原始指针的做法,容易出错

#include <iostream>
#include <memory>

class Child;
class Parent;

class Parent {
private:
    Child* myChild;
public:
    void setChild(Child* ch) {
        this->myChild = ch;
    }

    void doSomething() {
        if (this->myChild) {

        }
    }

    ~Parent() {
        delete myChild;
    }
};

class Child {
private:
    Parent* myParent;
public:
    void setPartent(Parent* p) {
        this->myParent = p;
    }
    void doSomething() {
        if (this->myParent) {

        }
    }
    ~Child() {
        delete myParent;
    }
};

int main() {
    {
        Parent* p = new Parent;
        Child* c =  new Child;
        p->setChild(c);
        c->setPartent(p);
        delete c;  //only delete one
    }
    return 0;
}

循环引用内存泄露的问题

#include <iostream>
#include <memory>

class Child;
class Parent;

class Parent {
private:
    std::shared_ptr<Child> ChildPtr;
public:
    void setChild(std::shared_ptr<Child> child) {
        this->ChildPtr = child;
    }

    void doSomething() {
        if (this->ChildPtr.use_count()) {

        }
    }

    ~Parent() {
    }
};

class Child {
private:
    std::shared_ptr<Parent> ParentPtr;
public:
    void setPartent(std::shared_ptr<Parent> parent) {
        this->ParentPtr = parent;
    }
    void doSomething() {
        if (this->ParentPtr.use_count()) {

        }
    }
    ~Child() {
    }
};

int main() {
    std::weak_ptr<Parent> wpp;
    std::weak_ptr<Child> wpc;
    {
        std::shared_ptr<Parent> p(new Parent);
        std::shared_ptr<Child> c(new Child);
        p->setChild(c);
        c->setPartent(p);
        wpp = p;
        wpc = c;
        std::cout << p.use_count() << std::endl; // 2
        std::cout << c.use_count() << std::endl; // 2
    }
    std::cout << wpp.use_count() << std::endl;  // 1
    std::cout << wpc.use_count() << std::endl;  // 1
    return 0;
}

正确的做法

#include <iostream>
#include <memory>

class Child;
class Parent;

class Parent {
private:
    //std::shared_ptr<Child> ChildPtr;
    std::weak_ptr<Child> ChildPtr;
public:
    void setChild(std::shared_ptr<Child> child) {
        this->ChildPtr = child;
    }

    void doSomething() {
        //new shared_ptr
        if (this->ChildPtr.lock()) {

        }
    }

    ~Parent() {
    }
};

class Child {
private:
    std::shared_ptr<Parent> ParentPtr;
public:
    void setPartent(std::shared_ptr<Parent> parent) {
        this->ParentPtr = parent;
    }
    void doSomething() {
        if (this->ParentPtr.use_count()) {

        }
    }
    ~Child() {
    }
};

int main() {
    std::weak_ptr<Parent> wpp;
    std::weak_ptr<Child> wpc;
    {
        std::shared_ptr<Parent> p(new Parent);
        std::shared_ptr<Child> c(new Child);
        p->setChild(c);
        c->setPartent(p);
        wpp = p;
        wpc = c;
        std::cout << p.use_count() << std::endl; // 2
        std::cout << c.use_count() << std::endl; // 1
    }
    std::cout << wpp.use_count() << std::endl;  // 0
    std::cout << wpc.use_count() << std::endl;  // 0
    return 0;
}

智能指针的实现

下面是一个简单智能指针的demo。智能指针类将一个计数器与类指向的对象相关联,引用计数跟踪该类有多少个对象共享同一指针。每次创建类的新对象时,初始化指针并将引用计数置为1;当对象作为另一对象的副本而创建时,拷贝构造函数拷贝指针并增加与之相应的引用计数;对一个对象进行赋值时,赋值操作符减少左操作数所指对象的引用计数(如果引用计数为减至0,则删除对象),并增加右操作数所指对象的引用计数;调用析构函数时,构造函数减少引用计数(如果引用计数减至0,则删除基础对象)。智能指针就是模拟指针动作的类。所有的智能指针都会重载 -> 和 * 操作符。智能指针还有许多其他功能,比较有用的是自动销毁。这主要是利用栈对象的有限作用域以及临时对象(有限作用域实现)析构函数释放内存。

#include <iostream>
#include <memory>

template<typename T>
class SmartPointer {
private:
    T* _ptr;
    size_t* _count;
public:
    SmartPointer(T* ptr = nullptr) :
            _ptr(ptr) {
        if (_ptr) {
            _count = new size_t(1);
        } else {
            _count = new size_t(0);
        }
    }

    SmartPointer(const SmartPointer& ptr) {
        if (this != &ptr) {
            this->_ptr = ptr._ptr;
            this->_count = ptr._count;
            (*this->_count)++;
        }
    }

    SmartPointer& operator=(const SmartPointer& ptr) {
        if (this->_ptr == ptr._ptr) {
            return *this;
        }

        if (this->_ptr) {
            (*this->_count)--;
            if (this->_count == 0) {
                delete this->_ptr;
                delete this->_count;
            }
        }

        this->_ptr = ptr._ptr;
        this->_count = ptr._count;
        (*this->_count)++;
        return *this;
    }

    T& operator*() {
        assert(this->_ptr == nullptr);
        return *(this->_ptr);

    }

    T* operator->() {
        assert(this->_ptr == nullptr);
        return this->_ptr;
    }

    ~SmartPointer() {
        (*this->_count)--;
        if (*this->_count == 0) {
            delete this->_ptr;
            delete this->_count;
        }
    }

    size_t use_count(){
        return *this->_count;
    }
};

int main() {
    {
        SmartPointer<int> sp(new int(10));
        SmartPointer<int> sp2(sp);
        SmartPointer<int> sp3(new int(20));
        sp2 = sp3;
        std::cout << sp.use_count() << std::endl;
        std::cout << sp3.use_count() << std::endl;
    }
    //delete operator
}

猜你喜欢

转载自blog.csdn.net/weixin_43675955/article/details/88361426