0/1 分数规划

模型:

给定整数 \(v_i, c_i\),规定 \(x_i=0\)\(1\),存在一组解 \(\{x_i\}\),使得 \(\displaystyle \frac{\sum_{i=1}^{n} v_ix_i}{\sum_{i=1}^{n} c_ix_i}\) 最大。

解法:

最大化 \(\displaystyle \frac{v_i}{c_i}\)(即性价比)的贪心方法不可行。

\(\displaystyle \frac{\sum_{i=1}^{n} v_ix_i}{\sum_{i=1}^{n} c_ix_i}\ge R\) 变式为 \(\sum_{i=1}^{n} (v_i-R\cdot c_i)x_i\ge 0\)

二分答案 \(R\),对于 \(R(\text{mid})\),计算 \(\sum_{i=1}^{n} (v_i-R\cdot c_i)x_i\) 的最大值,若最大值非负,令 \(l=\text{mid}\) (\(R\) 偏小),否则 \(r=\text{mid}\) (\(R\) 偏大)。

代码:

(ssoj2388 coffee)

#include <cstdio>
#include <algorithm>
#define db double
#define eps 1e-5
using namespace std;

int n, m;
struct node {
    int w, c; db r;
    bool operator < (const node& A) const {return r>A.r; }
} G[203];

int main() {
    scanf("%d%d", &n, &m);
    for (int i=1; i<=n; ++i) scanf("%d", &G[i].w);
    for (int i=1; i<=n; ++i) scanf("%d", &G[i].c);
    db l=0.0, r=1000.0;
    while (l+eps<r) {
        db mid=(l+r)/2.0;
        for (int i=1; i<=n; ++i) G[i].r=G[i].w-mid*G[i].c;
        sort(G+1, G+n+1);
        db sum=0.0;
        for (int i=1; i<=m; ++i) sum+=G[i].r;
        if (sum<0) r=mid; else l=mid;
    }
    printf("%.3lf\n", l);
    return 0;
}

猜你喜欢

转载自www.cnblogs.com/greyqz/p/10662401.html