java并发编程的艺术笔记第四章--java并发编程的基础

线程简介

什么是线程

现代操作系统调度的最小单元是线程,也叫轻量级进程(Light Weight Process),在一个进程里可以创建多个线程,这些线程都拥有各自的计数器、堆栈和局部变量等属性,并且能够访问共享的内存变量。处理器在这些线程上高速切换,让使用者感觉到这些线程在同时执行。

为什么要使用多线程

  1. 更多的处理器核心
  2. 更快的响应时间
  3. 更好的编程模型

线程优先级

设置线程优先级时,针对频繁阻塞(休眠或者I/O操作)的线程需要设置较高优先级,而偏重计算(需要较多CPU时间或者偏运算)的线程则设置较低的优先级,确保处理器不会被独占

在不同的JVM以及操作系统上,线程规划会存在差异,有些操作系统甚至会忽略对线程优先级的设定.

线程的状态

  1. 初始(NEW):新创建了一个线程对象,但还没有调用start()方法。
  2. 运行(RUNNABLE):Java线程中将就绪(ready)和运行中(running)两种状态笼统的称为“运行”。
    线程对象创建后,其他线程(比如main线程)调用了该对象的start()方法。该状态的线程位于可运行线程池中,等待被线程调度选中,获取CPU的使用权,此时处于就绪状态(ready)。就绪状态的线程在获得CPU时间片后变为运行中状态(running)。
  3. 阻塞(BLOCKED):表示线程阻塞于锁。
  4. 等待(WAITING):进入该状态的线程需要等待其他线程做出一些特定动作(通知或中断)。
  5. 超时等待(TIMED_WAITING):该状态不同于WAITING,它可以在指定的时间后自行返回。
  6. 终止(TERMINATED):表示该线程已经执行完毕。

Daemon线程

Daemon线程是一种支持型线程,因为它主要被用作程序中后台调度以及支持性工作。

当一个Java虚拟机中不存在非Daemon线程的时候,Java虚拟机将会退出

在构建Daemon线程时,不能依靠finally块中的内容来确保执行关闭或清理资源的逻辑。

启动和终止线程

构造线程

private void init(ThreadGroup g, Runnable target, String name,long stackSize,
AccessControlContext acc) {
if (name == null) {
throw new NullPointerException("name cannot be null");
}
// 当前线程就是该线程的父线程
Thread parent = currentThread();
this.group = g;
// 将daemon、priority属性设置为父线程的对应属性
this.daemon = parent.isDaemon();
this.priority = parent.getPriority();
this.name = name.toCharArray();
this.target = target;
setPriority(priority);
// 将父线程的InheritableThreadLocal复制过来
if (parent.inheritableThreadLocals != null)
this.inheritableThreadLocals=ThreadLocal.createInheritedMap(parent.
inheritableThreadLocals);
// 分配一个线程ID
tid = nextThreadID();
}

一个新构造的线程对象是由其parent线程来进行空间分配的,而child线程
继承了parent是否为Daemon、优先级和加载资源的contextClassLoader以及可继承的ThreadLocal,同时还会分配一个唯一的ID来标识这个child线程。至此,一个能够运行的线程对象就初始化好了,在堆内存中等待着运行。

启动线程

线程start()方法的含义是:当前线程(即parent线程)同步告知Java虚拟机,只要线程规划器空闲,应立即启动调用start()方法的线程。
为了方便分析和排查为题,启动一个线程前,最好为这个线程设置线程名称

理解中断

中断可以理解为线程的一个标识位属性,它表示一个运行中的线程是否被其他线程进行了中断操作
用线程的interrupt()中断线程

许多声明抛出InterruptedException的方法(例如Thread.sleep(long
millis)方法)这些方法在抛出InterruptedException之前,Java虚拟机会先将该线程的中断标识位清除,然后抛出InterruptedException,此时调用isInterrupted()方法将会返回false。

suspend()、resume()和stop() 已经过期 不要使用(产生死锁)

用等待/通知替代

安全的终止线程

在4.2.3节中提到的中断状态是线程的一个标识位,而中断操作是一种简便的线程间交互方式,而这种交互方式最适合用来取消或停止任务。除了中断以外,还可以利用一个boolean变量来控制是否需要停止任务并终止该线程。

public class Shutdown {
public static void main(String[] args) throws Exception {
Runner one = new Runner();
Thread countThread = new Thread(one, "CountThread");
countThread.start();
// 睡眠1秒,main线程对CountThread进行中断,使CountThread能够感知中断而结束
TimeUnit.SECONDS.sleep(1);
countThread.interrupt();
Runner two = new Runner();
countThread = new Thread(two, "CountThread");
countThread.start();
// 睡眠1秒,main线程对Runner two进行取消,使CountThread能够感知on为false而结束
TimeUnit.SECONDS.sleep(1);
two.cancel();
}
private static class Runner implements Runnable {
private long i;
private volatile boolean on = true;
@Override
public void run() {
while (on && !Thread.currentThread().isInterrupted()){
i++;
}
System.out.println("Count i = " + i);
}
public void cancel() {
on = false;
}
}
}

线程间的通信

volatile和synchronized关键字 略

等待通知机制

  1. notify() 通知一个在对象上等待的线程,由WAITING状态变为BLOCKING状态,从等待队列移动到同步队列,等待CPU调度获取该对象的锁,当该线程获取到了对象的锁后,该线程从wait()方法返回
  2. notifyAll() 通知所有等待在该对象上的线程,由WAITING状态变为BLOCKING状态,等待CPU调度获取该对象的锁
  3. wait() 调用该方法的线程进入WAITING状态,并将当前线程放置到对象的等待队列,只有等待另外线程的通知或被中断才会返回,需要注意,调用wait()方法后,会释放对象的锁
  4. wait(long) 超时等待一段时间,这里的参数时间是毫秒,也就是等待长达n毫秒,如果没有通知就超时返回
  5. wait(long,int) 对于超时时间更细力度的控制,可以达到纳秒
使用时的注意细节
  1. 使用wait()、notify()和notifyAll()时需要先对调用对象加锁。
  2. 调用wait()方法后,线程状态由RUNNING变为WAITING,并将当前线程放置到对象的
    等待队列。
  3. notify()或notifyAll()方法调用后,等待线程依旧不会从wait()返回,需要调用notify()或
    notifAll()的线程释放锁之后,等待线程才有机会从wait()返回。
  4. notify()方法将等待队列中的一个等待线程从等待队列中移到同步队列中,而notifyAll()
    方法则是将等待队列中所有的线程全部移到同步队列,被移动的线程状态由WAITING变为
    BLOCKED。
  5. 从wait()方法返回的前提是获得了调用对象的锁。

等待/通知的经典范式

等待方遵循如下原则
  1. 获取对象的锁。
  2. 如果条件不满足,那么调用对象的wait()方法,被通知后仍要检查条件。
  3. 条件满足则执行对应的逻辑。
    对应的伪代码如下。
synchronized(对象) {
while(条件不满足) {
    对象.wait();
}
    对应的处理逻辑
}
通知方遵循如下原则。

通知方遵循如下原则。

  1. 获得对象的锁。
  2. 改变条件。
  3. 通知所有等待在对象上的线程。
    对应的伪代码如下。
synchronized(对象) {
改变条件
对象.notifyAll();
}

管道输入/输出流

管道输入/输出流和普通的文件输入/输出流或者网络输入/输出流不同之处在于,它主要用于线程之间的数据传输,而传输的媒介为内存。

管道输入/输出流主要包括了如下4种具体实现:PipedOutputStream、PipedInputStream、PipedReader和PipedWriter,前两种面向字节,而后两种面向字符。

public class Piped {
public static void main(String[] args) throws Exception {
PipedWriter out = new PipedWriter();
PipedReader in = new PipedReader();
// 将输出流和输入流进行连接,否则在使用时会抛出IOException
out.connect(in);
Thread printThread = new Thread(new Print(in), "PrintThread");
printThread.start();
int receive = 0;
try {
while ((receive = System.in.read()) != -1) {
out.write(receive);
}
} finally {
out.close();
}
}
static class Print implements Runnable {
private PipedReader in;
public Print(PipedReader in) {
this.in = in;
}
public void run() {
int receive = 0;
try {
while ((receive = in.read()) != -1) {
System.out.print((char) receive);
}
} catch (IOException ex) {
}
}
}
}

Thread.join()的使用

如果一个线程A执行了thread.join()语句,其含义是:当前线程A等待thread线程终止之后才从thread.join()返回。

ThreadLocal的使用

ThreadLocal,即线程变量,是一个以ThreadLocal对象为键、任意对象为值的存储结构。这个结构被附带在线程上,也就是说一个线程可以根据一个ThreadLocal对象查询到绑定在这个线程上的一个值。

线程应用案例

等待超时模式

// 对当前对象加锁
public synchronized Object get(long mills) throws InterruptedException {
long future = System.currentTimeMillis() + mills;
long remaining = mills;
// 当超时大于0并且result返回值不满足要求
while ((result == null) && remaining > 0) {
wait(remaining);
remaining = future - System.currentTimeMillis();
}
return result;
}

数据库连接池示例代码

public class ConnectionPool {
private LinkedList<Connection> pool = new LinkedList<Connection>();
public ConnectionPool(int initialSize) {
if (initialSize > 0) {
for (int i = 0; i < initialSize; i++) {
pool.addLast(ConnectionDriver.createConnection());
}
}
}
public void releaseConnection(Connection connection) {
if (connection != null) {
synchronized (pool) {
// 连接释放后需要进行通知,这样其他消费者能够感知到连接池中已经归还了一个连接
pool.addLast(connection);
pool.notifyAll();
}
}
}
// 在mills内无法获取到连接,将会返回null
public Connection fetchConnection(long mills) throws InterruptedException {
synchronized (pool) {
// 完全超时
if (mills <= 0) {
while (pool.isEmpty()) {
pool.wait();
}
return pool.removeFirst();
} else {
long future = System.currentTimeMillis() + mills;
long remaining = mills;
while (pool.isEmpty() && remaining > 0) {
pool.wait(remaining);
remaining = future - System.currentTimeMillis();
}
Connection result = null;
if (!pool.isEmpty()) {
result = pool.removeFirst();
}
return result;
}
}
}
}

线程池技术示例代码

public interface ThreadPool<Job extends Runnable> {
// 执行一个Job,这个Job需要实现Runnable
void execute(Job job);
// 关闭线程池
void shutdown();
// 增加工作者线程
void addWorkers(int num);
// 减少工作者线程
void removeWorker(int num);
// 得到正在等待执行的任务数量
int getJobSize();
}

public class DefaultThreadPool<Job extends Runnable> implements ThreadPool<Job> {
// 线程池最大限制数
private static final int MAX_WORKER_NUMBERS = 10;
// 线程池默认的数量
private static final int DEFAULT_WORKER_NUMBERS = 5;
// 线程池最小的数量
private static final int MIN_WORKER_NUMBERS = 1;
// 这是一个工作列表,将会向里面插入工作
private final LinkedList<Job> jobs = new LinkedList<Job>();
// 工作者列表
private final List<Worker> workers = Collections.synchronizedList(new
ArrayList<Worker>());
// 工作者线程的数量
private int workerNum = DEFAULT_WORKER_NUMBERS;
// 线程编号生成
private AtomicLong threadNum = new AtomicLong();
public DefaultThreadPool() {
initializeWokers(DEFAULT_WORKER_NUMBERS);
}
public DefaultThreadPool(int num) {
workerNum = num > MAX_WORKER_NUMBERS MAX_WORKER_NUMBERS : num < MIN_WORKER_
NUMBERS MIN_WORKER_NUMBERS : num;
initializeWokers(workerNum);
}
public void execute(Job job) {
if (job != null) {
// 添加一个工作,然后进行通知
synchronized (jobs) {
jobs.addLast(job);
jobs.notify();
}
}
}
public void shutdown() {
for (Worker worker : workers) {
worker.shutdown();
}
}
public void addWorkers(int num) {
synchronized (jobs) {
// 限制新增的Worker数量不能超过最大值
if (num + this.workerNum > MAX_WORKER_NUMBERS) {
num = MAX_WORKER_NUMBERS - this.workerNum;
}
initializeWokers(num);
this.workerNum += num;
}
}
public void removeWorker(int num) {
synchronized (jobs) {
if (num >= this.workerNum) {
throw new IllegalArgumentException("beyond workNum");
}
// 按照给定的数量停止Worker
int count = 0;
while (count < num) {
Worker worker = workers.get(count)
if (workers.remove(worker)) {
worker.shutdown();
count++;
}
}
this.workerNum -= count;
}
}
public int getJobSize() {
return jobs.size();
}
// 初始化线程工作者
private void initializeWokers(int num) {
for (int i = 0; i < num; i++) {
Worker worker = new Worker();
workers.add(worker);
Thread thread = new Thread(worker, "ThreadPool-Worker-" + threadNum.
incrementAndGet());
thread.start();
}
}
// 工作者,负责消费任务
class Worker implements Runnable {
// 是否工作
private volatile boolean running = true;
public void run() {
while (running) {
Job job = null;
synchronized (jobs) {
// 如果工作者列表是空的,那么就wait
while (jobs.isEmpty()) {
try {
jobs.wait();
} catch (InterruptedException ex) {
// 感知到外部对WorkerThread的中断操作,返回
Thread.currentThread().interrupt();
return;
}
}
// 取出一个Job
job = jobs.removeFirst();
}
if (job != null) {
try {
job.run();
} catch (Exception ex) {
// 忽略Job执行中的Exception
}
}
}
}
public void shutdown() {
running = false;
}
}
}

基于前面的线程池代码的简单web服务器

public class SimpleHttpServer {
// 处理HttpRequest的线程池
static ThreadPool<HttpRequestHandler> threadPool = new DefaultThreadPool
<HttpRequestHandler>(1);
// SimpleHttpServer的根路径
static String basePath;
static ServerSocket serverSocket;
// 服务监听端口
static int port = 8080;
public static void setPort(int port) {
if (port > 0) {
SimpleHttpServer.port = port;
}
}
public static void setBasePath(String basePath) {
if (basePath != null && new File(basePath).exists() && new File(basePath).
isDirectory()) {
SimpleHttpServer.basePath = basePath;
}
}
// 启动SimpleHttpServer
public static void start() throws Exception {
serverSocket = new ServerSocket(port);
Socket socket = null;
while ((socket = serverSocket.accept()) != null) {
// 接收一个客户端Socket,生成一个HttpRequestHandler,放入线程池执行
threadPool.execute(new HttpRequestHandler(socket));
}
serverSocket.close();
}
static class HttpRequestHandler implements Runnable {
private Socket socket;
public HttpRequestHandler(Socket socket) {
this.socket = socket;
}
@Override
public void run() {
String line = null;
BufferedReader br = null;
BufferedReader reader = null;
PrintWriter out = null;
InputStream in = null;
try {
reader = new BufferedReader(new InputStreamReader(socket.getInputStream()));
String header = reader.readLine();
// 由相对路径计算出绝对路径
String filePath = basePath + header.split(" ")[1];
out = new PrintWriter(socket.getOutputStream());
// 如果请求资源的后缀为jpg或者ico,则读取资源并输出
if (filePath.endsWith("jpg") || filePath.endsWith("ico")) {
in = new FileInputStream(filePath);
ByteArrayOutputStream baos = new ByteArrayOutputStream();
int i = 0;
while ((i = in.read()) != -1) {
baos.write(i);
}
byte[] array = baos.toByteArray();
out.println("HTTP/1.1 200 OK");
out.println("Server: Molly");
out.println("Content-Type: image/jpeg");
out.println("Content-Length: " + array.length);
out.println("");
socket.getOutputStream().write(array, 0, array.length);
} else {
br = new BufferedReader(new InputStreamReader(new
FileInputStream(filePath)));
out = new PrintWriter(socket.getOutputStream());
out.println("HTTP/1.1 200 OK");
out.println("Server: Molly");
out.println("Content-Type: text/html; charset=UTF-8");
out.println("");
while ((line = br.readLine()) != null) {
out.println(line);
}
}
out.flush();
} catch (Exception ex) {
out.println("HTTP/1.1 500");
out.println("");
out.flush();
} finally {
close(br, in, reader, out, socket);
}
}
}
// 关闭流或者Socket
private static void close(Closeable... closeables) {
if (closeables != null) {
for (Closeable closeable : closeables) {
try {
closeable.close();
} catch (Exception ex) {
}
}
}
}
}

猜你喜欢

转载自blog.csdn.net/qq413041153/article/details/88734778