【C++】模板进阶

【本节内容】
非类型模板参数
类模板的特化

这篇博客的内容可参照我的上篇博客函数模板和类模板,一起学习。

1.非类型模板参数

模板参数分 类型形参非类型形参
类型形参:出现在模板参数列表中,跟在class或typename之类的参数类型名称。
非类型形参:用常量做类(函数)模板的参数,在类(函数)模板中可将该参数当常量使用。

   //定义模板类型的静态数组
template <class T,size_t N=10>
  //其中,T是类型形参,N是非类型形参
class array
{
public:
	T&operator [](size_t index)
	{
		return _array[index];
	}
	size_t Size()const
	{
		return _size;
	}
	bool Empty()const
	{
		return 0 == _size;
	}
private:
	T _array[N];
	size_t _size;
};

注意:
1.浮点型、类对象以及字符串是不允许作为非类型模板参数的(一般都为int)。
2.非类型模板参数必须在编译器就能确定结果。

2.模板特化

2.1 概念:使用模板可以实现一些与类型无关的代码,但对于一些特殊类型可能会得到一些错误的结果。

例如:

template<class T>
bool IsEqual( T& left,T& right)
{
	return left == right;
}
void Test()
{
	char p1[] = "hello";
	char p2[] = "hello";
	if (IsEqual(p1, p2))
		cout << "相同" << endl;
	else
		cout << "不相同" << endl;
}

在这里插入图片描述
上面代码中,P1和P2的内容明明相同,为什么运行结果却是“不相同”呢?
其实啊,上面IsEqual 函数是直接按值比较,如果我们的参数是int或float类型当然是没有问题的,但是p1和p2是指针而不是各自的内容,这里就只能按指针的地址比较,因为P1和P2在内存的位置肯定不相同,所以上面的结果是理所当然。
我们要想进行字符串的比较,就需要对模板进行特化。
模板特化:在原模板的基础上,针对特殊类型所进行特殊化的实现方式。
模板特化分为 函数模板特化和类模板特化。

2.2 函数模板特化

函数模板特化的步骤:
1.必须要有一个基础的函数模板
2.关键字template后接一对空的尖括号<>
3.函数名后跟一对尖括号,<>中指定需要特化的类型
4.函数形参表:必须和函数模板的基础参数类型完全相同,若不同编译器会报错

template<>
bool IsEqual <char*> ( char*& left, char* & right)   //必须两个char
{
	return (strcmp(left, right) ==0);
}

也可以将函数直接给出。

bool IsEqual(char* left, char* right)
{
	return (strcmp(left, right) == 0);
}
2.3 类模板特化

2.3.1 全特化:将模板参数列表中所有的参数都确定化。

template<class T1,class T2>
class Date
{
public:
	Date()
	{
		cout << "Date<T1,T2>" << endl;
	}
private:
	T1 _d1;
	T2 _d2;
};
template<>
class Date<int,char>     //必须一个 int 一个char
{
public:
	Date()
	{
		cout << "Date<int,char>" << endl;
	}
private:
	int  _d1;
	char _d2;
};
void Test2()
{
	Date<int, int> d1;
	Date<int, char> d2;
}

2.3.2 偏特化:任何针对模板参数进一步进行条件限制设计的特化版本。
部分特化:将模板参数中的一部分参数特化

template<class T1>
class Date<T1,int >    //只要有一个int 就可以调用
{
public:
	Date()
	{
		cout << "Date<T1,int>" << endl;
	}
private:
		int  _d1;
		char _d2;
};

参数更进一步限制:针对模板更进一步的条件限制所设计的特化版本


//两个参数偏特化为指针类型
template<typename T1,typename T2>
class Date<T1*, T2*>    //只要指针就调用
{
public:
	Date() { cout << "Date<T1*,T2*>" << endl; }
private:
	T1 _d1;
	T2 _d2;
};

//两个参数偏特化为引用类型
template<typename T1, typename T2>
class Date<T1&, T2&>     //只要引用就调用
{
public:
	Date(const T1&d1, const T2&d2)
		:_d1(d1)
		, _d2(d2)
	{
		cout << "Date<T1&, T2&>" << endl;
	}
private:
	const T1& _d1;
	const T2& _d2;
};
类型萃取 typetraits
模板分离编译

什么是分离编译?
一个程序(项目)由若干个源文件共同实现,而每个源文件单独编译生成目标文件,最后将所有目标文件链接起来形成单一的可执行文件的过程称为分离编译模式。
模板的分离编译:
C/C++程序运行的步骤:(nain.cpp func.cpp func.h)
1)预处理:展开头文件 (main.i func.i)
2)编译: 检查语法错误,生成汇编代码(main.s func.s)
3)汇编:把二进制代码转换成二进制机器码(main.o func.o)
4)链接:链接到一起,生成可执行代码(a.exe或a.out)

模板中不支持分离声明和定义,解决的方法是:
1.将声明和定义放在同一个头文件下(推荐)
2.模板定义的位置显式实例化(不实用)

模板的总结

【优点】

  1. 模板复用了代码,节省资源,完成更快的迭代开发,C++的模板标准库STL因此而产生
  2. 增强了代码的灵活性

【缺点】
1.模板会导致代码膨胀问题,也会使编译时间变长
2.出现模板编译错误时,错误信息凌乱,不宜定位错误

猜你喜欢

转载自blog.csdn.net/ly_6699/article/details/88778459