Stormstarter-RollingTopWords

实现了滑动窗口计数和TopN排序, 比较有意思, 具体分析一下代码
Topology

这是一个稍微复杂些的topology, 主要体现在使用不同的grouping方式, fieldsGrouping和globalGrouping

String spoutId = "wordGenerator";
String counterId = "counter";
String intermediateRankerId = "intermediateRanker";
String totalRankerId = "finalRanker";
builder.setSpout(spoutId, new TestWordSpout(), 5);
builder.setBolt(counterId, new RollingCountBolt(9, 3), 4).fieldsGrouping(spoutId, new Fields("word"));
builder.setBolt(intermediateRankerId, new IntermediateRankingsBolt(TOP_N), 4).fieldsGrouping(counterId, new Fields("obj"));
builder.setBolt(totalRankerId, new TotalRankingsBolt TOP_N)).globalGrouping(intermediateRankerId);

 
 
RollingCountBolt

首先使用RollingCountBolt, 并且此处是按照word进行fieldsGrouping的, 所以相同的word会被发送到同一个bolt, 这个field id是在上一级的declareOutputFields时指定的

RollingCountBolt, 用于基于时间窗口的counting, 所以需要两个参数, the length of the sliding window in seconds和the emit frequency in seconds

    new RollingCountBolt(9, 3), 意味着output the latest 9 minutes sliding window every 3 minutes

1. 创建SlidingWindowCounter(SlidingWindowCounter和SlotBasedCounter参考下面)
counter = new SlidingWindowCounter(this.windowLengthInSeconds / this.windowUpdateFrequencyInSeconds);
如何定义slot数? 对于9 min的时间窗口, 每3 min emit一次数据, 那么就需要9/3=3个slot
那么在3 min以内, 不停的调用countObjAndAck(tuple)来递增所有对象该slot上的计数
每3分钟会触发调用emitCurrentWindowCounts, 用于滑动窗口(通过getCountsThenAdvanceWindow), 并emit (Map<obj, 窗口内的计数和>, 实际使用时间)
因为实际emit触发时间, 不可能刚好是3 min, 会有误差, 所以需要给出实际使用时间

 

2. TupleHelpers.isTickTuple(tuple), TickTuple

前面没有说的一点是, 如何触发emit? 这是比较值得说明的一点, 因为其使用Storm的TickTuple特性.
这个功能挺有用, 比如数据库批量存储, 或者这里的时间窗口的统计等应用
"__system" component会定时往task发送 "__tick" stream的tuple
发送频率由TOPOLOGY_TICK_TUPLE_FREQ_SECS来配置, 可以在default.ymal里面配置
也可以在代码里面通过getComponentConfiguration()来进行配置,

public Map<String, Object> getComponentConfiguration() {
Map<String, Object> conf = new HashMap<String, Object>();
conf.put(Config.TOPOLOGY_TICK_TUPLE_FREQ_SECS, emitFrequencyInSeconds);
return conf;

 

配置完成后, storm就会定期的往task发送ticktuple
只需要通过isTickTuple来判断是否为tickTuple, 就可以完成定时触发的功能

public static boolean isTickTuple(Tuple tuple) {
return tuple.getSourceComponent().equals(Constants.SYSTEM_COMPONENT_ID) \\ SYSTEM_COMPONENT_ID == "__system"
&& tuple.getSourceStreamId().equals(Constants.SYSTEM_TICK_STREAM_ID); \\ SYSTEM_TICK_STREAM_ID == "__tick"
}

 
最终, 这个blot的输出为, collector.emit(new Values(obj, count, actualWindowLengthInSeconds));
obj, count(窗口内的计数和), 实际使用时间

 
SlotBasedCounter

基于slot的counter, 模板类, 可以指定被计数对象的类型T
这个类其实很简单, 实现计数对象和一组slot(用long数组实现)的map, 并可以对任意slot做increment或reset等操作

关键结构为Map<T, long[]> objToCounts, 为每个obj都对应于一个大小为numSlots的long数组, 所以对每个obj可以计numSlots个数
incrementCount, 递增某个obj的某个slot, 如果是第一次需要创建counts数组
getCount, getCounts, 获取某obj的某slot值, 或某obj的所有slot值的和
wipeSlot, resetSlotCountToZero, reset所有对象的某solt为0, reset某obj的某slot为0
wipeZeros, 删除所有total count为0的obj, 以释放空间

public final class SlotBasedCounter<T> implements Serializable {
private static final long serialVersionUID = 4858185737378394432L;
private final Map<T, long[]> objToCounts = new HashMap<T, long[]>();
private final int numSlots;
public SlotBasedCounter(int numSlots) {
if (numSlots <= 0) {
throw new IllegalArgumentException("Number of slots must be greater than zero (you requested " + numSlots
+ ")");
}
this.numSlots = numSlots;
}
public void incrementCount(T obj, int slot) {
long[] counts = objToCounts.get(obj);
if (counts == null) {
counts = new long[this.numSlots];
objToCounts.put(obj, counts);
}
counts[slot]++;
}
public long getCount(T obj, int slot) {
long[] counts = objToCounts.get(obj);
if (counts == null) {
return 0;
}
else {
return counts[slot];
}
}
public Map<T, Long> getCounts() {
Map<T, Long> result = new HashMap<T, Long>();
for (T obj : objToCounts.keySet()) {
result.put(obj, computeTotalCount(obj));
}
return result;
}
private long computeTotalCount(T obj) {
long[] curr = objToCounts.get(obj);
long total = 0;
for (long l : curr) {
total += l;
}
return total;
}
/**
* Reset the slot count of any tracked objects to zero for the given slot.
*
* @param slot
*/
public void wipeSlot(int slot) {
for (T obj : objToCounts.keySet()) {
resetSlotCountToZero(obj, slot);
}
}
private void resetSlotCountToZero(T obj, int slot) {
long[] counts = objToCounts.get(obj);
counts[slot] = 0;
}
private boolean shouldBeRemovedFromCounter(T obj) {
return computeTotalCount(obj) == 0;
}
/**
* Remove any object from the counter whose total count is zero (to free up memory).
*/
public void wipeZeros() {
Set<T> objToBeRemoved = new HashSet<T>();
for (T obj : objToCounts.keySet()) {
if (shouldBeRemovedFromCounter(obj)) {
objToBeRemoved.add(obj);
}
}
for (T obj : objToBeRemoved) {
objToCounts.remove(obj);
}
}
}

 


SlidingWindowCounter

SlidingWindowCounter只是对SlotBasedCounter做了进一步的封装, 通过headSlot和tailSlot提供sliding window的概念

incrementCount, 只能对headSlot进行increment, 其他slot作为窗口中的历史数据

核心的操作为, getCountsThenAdvanceWindow
1. 取出Map<T, Long> counts, 对象和窗口内所有slots求和值的map
2. 调用wipeZeros, 删除已经不被使用的obj, 释放空间
3. 最重要的一步, 清除tailSlot, 并advanceHead, 以实现滑动窗口
    advanceHead的实现, 如何在数组实现循环的滑动窗口

public final class SlidingWindowCounter<T> implements Serializable {
private static final long serialVersionUID = -2645063988768785810L;
private SlotBasedCounter<T> objCounter;
private int headSlot;
private int tailSlot;
private int windowLengthInSlots;
public SlidingWindowCounter(int windowLengthInSlots) {
if (windowLengthInSlots < 2) {
throw new IllegalArgumentException("Window length in slots must be at least two (you requested "
+ windowLengthInSlots + ")");
}
this.windowLengthInSlots = windowLengthInSlots;
this.objCounter = new SlotBasedCounter<T>(this.windowLengthInSlots);
this.headSlot = 0;
this.tailSlot = slotAfter(headSlot);
}
public void incrementCount(T obj) {
objCounter.incrementCount(obj, headSlot);
}
/**
* Return the current (total) counts of all tracked objects, then advance the window.
*
* Whenever this method is called, we consider the counts of the current sliding window to be available to and
* successfully processed "upstream" (i.e. by the caller). Knowing this we will start counting any subsequent
* objects within the next "chunk" of the sliding window.
*
* @return
*/
public Map<T, Long> getCountsThenAdvanceWindow() {
Map<T, Long> counts = objCounter.getCounts();
objCounter.wipeZeros();
objCounter.wipeSlot(tailSlot);
advanceHead();
return counts;
}
private void advanceHead() {
headSlot = tailSlot;
tailSlot = slotAfter(tailSlot);
}
private int slotAfter(int slot) {
return (slot + 1) % windowLengthInSlots;
}
}

 

IntermediateRankingsBolt

这个bolt作用就是对于中间结果的排序, 为什么要增加这步, 应为数据量比较大, 如果直接全放到一个节点上排序, 会负载太重
所以先通过IntermediateRankingsBolt, 过滤掉一些
这里仍然使用, 对于obj进行fieldsGrouping, 保证对于同一个obj, 不同时间段emit的统计数据会被发送到同一个task

IntermediateRankingsBolt继承自AbstractRankerBolt(参考下面)
并实现了updateRankingsWithTuple,

void updateRankingsWithTuple(Tuple tuple) {
Rankable rankable = RankableObjectWithFields.from(tuple);
super.getRankings().updateWith(rankable);
}

 

逻辑很简单, 将Tuple转化Rankable, 并更新Rankings列表

参考AbstractRankerBolt, 该bolt会定时将Ranking列表emit出去


Rankable

Rankable除了继承Comparable接口, 还增加getObject()和getCount()接口

public interface Rankable extends Comparable<Rankable> {
Object getObject();
long getCount();
}

 

RankableObjectWithFields

RankableObjectWithFields实现Rankable接口
1. 提供将Tuple转化为RankableObject
Tuple由若干field组成, 第一个field作为obj, 第二个field作为count, 其余的都放到List<Object> otherFields中

2. 实现Rankable定义的getObject()和getCount()接口

3. 实现Comparable接口, 包含compareTo, equals

public class RankableObjectWithFields implements Rankable

public static RankableObjectWithFields from(Tuple tuple) {
List<Object> otherFields = Lists.newArrayList(tuple.getValues());
Object obj = otherFields.remove(0);
Long count = (Long) otherFields.remove(0);
return new RankableObjectWithFields(obj, count, otherFields.toArray());
}

 

Rankings

Rankings维护需要排序的List, 并提供对List相应的操作

核心的数据结构如下, 用来存储rankable对象的list
List<Rankable> rankedItems = Lists.newArrayList();

提供一些简单的操作, 比如设置maxsize(list size), getRankings(返回rankedItems, 排序列表)

核心的操作是,

public void updateWith(Rankable r) {
addOrReplace(r);
rerank();
shrinkRankingsIfNeeded();
}

 

上一级的blot会定期的发送某个时间窗口的(obj, count), 所以obj之间的排序是在不断变化的
1. 替换已有的, 或新增rankable对象(包含obj, count)
2. 从新排序(Collections.sort)
3. 由于只需要topN, 所以大于maxsize的需要删除
AbstractRankerBolt

首先以TopN为参数, 创建Rankings对象

private final Rankings rankings;
public AbstractRankerBolt(int topN, int emitFrequencyInSeconds) {
count = topN;
this.emitFrequencyInSeconds = emitFrequencyInSeconds;
rankings = new Rankings(count);
}

 

在execute中, 也是定时触发emit, 同样是通过emitFrequencyInSeconds来配置tickTuple
一般情况, 只是使用updateRankingsWithTuple不断更新Rankings
这里updateRankingsWithTuple是abstract函数, 需要子类重写具体的update逻辑

public final void execute(Tuple tuple, BasicOutputCollector collector) {
if (TupleHelpers.isTickTuple(tuple)) {
emitRankings(collector);
}
else {
updateRankingsWithTuple(tuple);
}
}

 

最终将整个rankings列表emit出去

private void emitRankings(BasicOutputCollector collector) {
collector.emit(new Values(rankings));
getLogger().info("Rankings: " + rankings);
}

 


TotalRankingsBolt

该bolt会使用globalGrouping, 意味着所有的数据都会被发送到同一个task进行最终的排序.
TotalRankingsBolt同样继承自AbstractRankerBolt

void updateRankingsWithTuple(Tuple tuple) {
Rankings rankingsToBeMerged = (Rankings) tuple.getValue(0);
super.getRankings().updateWith(rankingsToBeMerged);
}

 

唯一的不同是, 这里updateWith的参数是个rankable列表, 在Rankings里面的实现一样, 只是多了遍历

最终可以得到, 全局的TopN的Rankings列表

猜你喜欢

转载自liyonghui160com.iteye.com/blog/2070323