Java泛型总结——吃透泛型开发

什么是泛型

泛型是jdk5引入的类型机制,就是将类型参数化,它是早在1999年就制定的jsr14的实现。

泛型机制将类型转换时的类型检查从运行时提前到了编译时,使用泛型编写的代码比杂乱的使用object并在需要时再强制类型转换的机制具有更好的可读性和安全性。

泛型程序设计意味着程序可以被不同类型的对象重用,类似c++的模版。

泛型对于集合类尤其有用,如ArrayList。这里可能有疑问,既然泛型为了适应不同的对象,ArrayList本来就可以操作不同类型的对象呀?那是因为没有泛型之前采用继承机制实现的,实际上它只维护了一个Object对象的数组。结果就是对List来说它只操作了一类对象Object,而在用户看来却可以保存不同的对象。

泛型提供了更好的解决办法——类型参数,如:

List<String> list = new ArrayList<String>();

这样解决了几个问题:

1 可读性,从字面上就可以判断集合中的内容类型;
2 类型检查,避免插入非法类型。
3 获取数据时不在需要强制类型转换。

泛型类

public class Pair<T>{ private T field1; }

其中 <T> 是类型参数定义。

使用时:Pair<String> p = new Pair<String>();

此时类内部的field1就是字符串类型了。

如果引用多个类型,可以使用逗号分隔:<S, D>

类型参数名可以使用任意字符串,建议使用有代表意义的单个字符,以便于和普通类型名区分,如:T代表type,有原数据和目的数据就用SD,子元素类型用E等。当然,你也可以定义为XYZ,甚至xyZ

泛型方法

泛型方法定义如下:

public static <T> T marshalle(T arg){}

与泛型类一样,<T> 是类型参数定义。如:

public class GenericMethod { public static <T> T getMiddle(T... a){ return a[a.length/2]; } }

严格的调用方式:

String o=GenericMethod.<String>getMiddle("213","result","12");

一般情况下调用时可以省略,看起来就像定义String类型参数的方法:
GenericMethod.getMiddle(String,String,String),这是因为jdk会根据参数类型进行推断。看一下下面的例子:

Object o=GenericMethod.getMiddle("213",0,"12"); System.out.println(o.getClass()); System.out.println(o);

输出结果为:

class java.lang.Integer 0

这是因为jdk推断三个参数的共同父类,匹配为Object,那么相当于:

Object o=GenericMethod.<Object>getMiddle("213",0,"12");

习惯了类型参数放在类的后面,如ArrayList<String>,泛型方法为什么不放在后面?看一个例子:

public static <T,S> T f(T t){return t;} public static class a{} public static class b{} //尽量恶心一点 @Test public void test(){ a c=new a(); <a,b>f(c);//OK f<a,b>(c);//error,看起来像是一个逗号运算符连接的两个逻辑表达式,当然目前java中除了for(...)并不支持逗号运算符 }

因此,为了避免歧义,jdk采用类型限定符前置。

泛型方法与泛型类的方法

如果泛型方法定义在泛型类中,而且类型参数一样:

public class GenericMethod<T> { public <T> void sayHi(T t){ System.out.println("Hi "+t); } }

是不是说,定义GenericMethod时传了 Integer 类型,sayHi()也就自动变成 Integer 了呢?No。

String i="abc"; new GenericMethod<Integer>().<String>sayHi(i);

该代码运行一点问题都没有。原因就在于泛型方法中的<T>,如果去掉它,就有问题了。

The method sayHi(Integer) in the type GenericMethod<Integer> is not applicable for the arguments (String)

小结:

泛型方法有自己的类型参数,泛型类的成员方法使用的是当前类的类型参数。

方法中有<T> 是泛型方法;没有的,称为泛型类中的成员方法。

类型参数的限定

如果限制只有特定某些类可以传入T参数,那么可以对T进行限定,如:只有实现了特定接口的类:<T extends Comparable>,表示的是Comparable及其子类型。

为什么是extends不是 implements,或者其他限定符?

严格来讲,该表达式意味着:`T subtypeOf Comparable`,jdk不希望再引入一个新的关键词; 其次,T既可以是类对象也可以是接口,如果是类对象应该是`implements`,而如果是接口,则应该是`extends`;从子类型上来讲,extends更接近要表达的意思。 好吧,这是一个约定。

限定符可以指定多个类型参数,分隔符是 &,不是逗号,因为在类型参数定义中,逗号已经作为多个类型参数的分隔符了,如:<T,S extends Comparable & Serializable>

泛型限定的优点:

限制某些类型的子类型可以传入,在一定程度上保证类型安全;

可以使用限定类型的方法。如:

public class Parent<T>{ private T name; public T getName() { return name; } public void setName(T name) { //这里只能使用name自object继承的方法 this.name = name; } }

加上限定符,就可以访问限定类型的方法了,类型更明确。

public class Parent<T extends List<T>>{ private T name; public T getName() { return name; } public void setName(T name) { //这里可以访问List的方法,如name.size() this.name = name; } }

注:

我们知道final类不可继承,在继承机制上class SomeString extends String是错误的,但泛型限定符使用时是可以的:<T extends String>,只是会给一个警告。

后面的通配符限定有一个super关键字,这里没有。

泛型擦除

泛型只在编译阶段有效,编译后类型被擦除了,也就是说jvm中没有泛型对象,只有普通对象。所以完全可以把代码编译为jdk1.0可以运行的字节码。

擦除的方式

定义部分,即尖括号中间的部分直接擦除。

public class GenericClass<T extends Comparable>{}

擦除后:

public class GenericClass{}

引用部分如:

public T field1;

其中的T被替换成对应的限定类型,擦除后:

public Comparable field1;

如果没有限定类型:

public class GenericClass<T>{ public T field1; }

那么的替换为object,即:

public class GenericClass{ public Object field1; }

有多个限定符的,替换为第一个限定类型名。如果引用了第二个限定符的类对象,编译器会在必要的时候进行强制类型转换。

public class GenericClass<T extends Comparable & Serializable>{ public T field1; }

类擦除后变为:

public class GenericClass{ public Comparable field1; }

而表达式返回值返回时,泛型的编译器自动插入强制类型转换。

泛型擦除的残留

反编译GenericClass:

Compiled from "GenericClass.java"
public class com.pollyduan.generic.GenericClass<T> { public T field1; public com.pollyduan.generic.GenericClass(); }

好像前面说的不对啊,这还是T啊,没有擦除呀?

这就是擦除的残留。反汇编:

{
public T field1; descriptor: Ljava/lang/Object; flags: ACC_PUBLIC Signature: #8 // TT; public com.pollyduan.generic.GenericClass(); descriptor: ()V flags: ACC_PUBLIC Code: stack=1, locals=1, args_size=1 0: aload_0 1: invokespecial #12 // Method java/lang/Object."<init>":()V 4: return LineNumberTable: line 2: 0 LocalVariableTable: Start Length Slot Name Signature 0 5 0 this Lcom/pollyduan/generic/GenericClass; LocalVariableTypeTable: Start Length Slot Name Signature 0 5 0 this Lcom/pollyduan/generic/GenericClass<TT;>; } SourceFile: "GenericClass.java" Signature: #22 // <T:Ljava/lang/Object;>Ljava/lang/Object;

其中:

descriptor:对方法参数和返回值进行描述;
signature:泛型类中独有的标记,普通类中没有,JDK5才加入,标记了定义时的成员签名,包括定义时的泛型参数列表,参数类型,返回值等;

可以看到public T field1;是签名,还保留了定义的格式;其对应的参数类型是Ljava/lang/Object;

最后一行是类的签名,可以看到T后面有跟了擦除后的参数类型:<T:Ljava/lang/Object;>

这样的机制,对于分析字节码是有意义的。

泛型的约束和限制

不能使用8个基本类型实例化类型参数

原因在于类型擦除,Object不能存储基本类型:

byte,char,short,int,long,float,double,boolean

从包装类角度来看,或者说三个:
Number(byte,short,int,long,float,double),char,boolean

类型检查不可使用泛型

if(aaa instanceof Pair<String>){}//error Pair<String> p = (Pair<String>) a;//warn Pair<String> p; Pair<Integer> i; i.getClass()==p.getClass();//true

不能创建泛型对象数组

GenericMethod<User>[] o=null;//ok o=new GenericMethod<User>[10];//error

可以定义泛型类对象的数组变量,不能创建及初始化。

注,可以创建通配类型数组,然后进行强制类型转换。不过这是类型不安全的。

o=(GenericMethod<User>[]) new GenericMethod<?>[10];

不可以创建的原因是:因为类型擦除的原因无法在为元素赋值时类型检查,因此jdk强制不允许。

有一个特例是方法的可变参数,虽然本质上是数组,却可以使用泛型。

安全的方法是使用List。

Varargs警告

java不支持泛型类型的对象数组,可变参数是可以的。它也正是利用了强制类型转换,因此同样是类型不安全的。所以这种代码编译器会给一个警告。

public static <T> T getMiddle(T... a){ return a[a.length/2]; }

去除警告有两种途径:一种是在定义可变参数方法上(本例中的getMiddle())加上@SafeVarargs注解,另一种是在调用该方法时添加@SuppressWarnings("unchecked")注解。

不能实例化泛型对象

T t= new T();//error T.class.newInstance();//error T.class;//error

解决办法是传入Class<T> t参数,调用t.newInstance()

public void sayHi(Class<T> c){ T t=null; try { t=c.newInstance(); } catch (Exception e) { e.printStackTrace(); } System.out.println("Hi "+t); }

不能在泛型类的静态域中使用泛型类型

public class Singleton<T>{ private static T singleton; //error public static T getInstance(){} //error public static void print(T t){} //error }

但是,静态的泛型方法可以使用泛型类型:

public static <T> T getInstance(){return null;} //ok public static <T> void print(T t){} //ok

这个原因很多资料中都没说的太明白,说一下个人理解,仅供参考:

1. 泛型类中,<T>称为类型变量,实际上就相当于在类中隐形的定义了一个不可见的成员变量:`private T t;`,这是对象级别的,对于泛型类型变量来说是在对象初始化时才知道其具体类型的。而在静态域中,不需要对象初始化就可以调用,这是矛盾的。 2. 静态的泛型方法,是在方法层面定义的,就是说在调用方法时,T所指的具体类型已经明确了。

不能捕获泛型类型的对象

Throwable类不可以被继承,自然也不可能被catch

public class GenericThrowable<T> extends Throwable{ //The generic class GenericThrowable<T> may not subclass java.lang.Throwable }

但由于Throwable可以用在泛型类型参数中,因此可以变相的捕获泛型的Throwable对象。

@Test
public void testGenericThrowable(){ GenericThrowable<RuntimeException> obj=new GenericThrowable<RuntimeException>(); obj.doWork(new RuntimeException("why?")); } public static class GenericThrowable<T extends Throwable>{ public void doWork(T t) throws T{ try{ int i=3/0; }catch(Throwable cause){ t.initCause(cause); throw t; } } }

这个能干什么?

@Test
public void testGenericThrowable(){ GenericThrowable<RuntimeException> obj=new GenericThrowable<RuntimeException>(); obj.doWork(new RuntimeException("What did you do?")); } public static class GenericThrowable<T extends Throwable>{ public void doWork(T t) throws T{ try{ Reader reader=new FileReader("notfound.txt"); //这里应该是checked异常 }catch(Throwable cause){ t.initCause(cause); throw t; } } }

FileReader实例化可能抛出已检查异常,jdk中要求必须捕获或者抛出已检查异常。这种模式把它给隐藏了。也就是说可以消除已检查异常,有点不地道,颠覆了java异常处理的认知,后果不可预料,慎用。

擦除的冲突

重载与重写

定义一个普通的父类:

package com.pollyduan.generic; public class Parent{ public void setName(Object name) { System.out.println("Parent:" + name); } }

那么继承一个子类,Son.java

package com.pollyduan.generic; public class Son extends Parent { public void setName(String name) { System.out.println("son:" + name); } public static void main(String[] args) { Son son=new Son(); son.setName("abc"); son.setName(new Object()); } }

Son类重载了一个setName(String)方法,这没问题。输出:

son:abc
Parent:java.lang.Object@6d06d69c

Parent修改泛型类:

package com.pollyduan.generic; public class Parent<T>{ public void setName(T name) { System.out.println("Parent:" + name); } }

从擦除的机制得知,擦除后的class文件为:

package com.pollyduan.generic; public class Parent{ public void setName(Object name) { System.out.println("Parent:" + name); } }

这和最初的非泛型类是一样的,那么Son类修改为:

package com.pollyduan.generic; public class Son extends Parent<String> { public void setName(String name) { System.out.println("son:" + name); } public static void main(String[] args) { Son son=new Son(); son.setName("abc"); son.setName(new Object());//The method setName(String) in the type Son is not applicable for the arguments (Object) } }

发现重载无效了。这是泛型擦除造成的,无论是否在setName(String)是否标注为@Override都将是重写,都不是重载。而且,即便你不写setName(String)方法,编译器已经默认重写了这个方法。

换一个角度来考虑,定义Son时,Parent已经明确了类型参数为String,那么再写setName(Stirng)是重写,也是合理的。

package com.pollyduan.generic; public class Son extends Parent<String> { public static void main(String[] args) { Son son=new Son(); son.setName("abc");//ok } }

反编译会发现,编译器在内部编译了两个方法:

  public void setName(java.lang.String); public void setName(java.lang.Object);

setName(java.lang.Object) 虽然是public但编码时会发现不可见,它称为"桥方法",它会重写父类的方法。

Son son=new Son(); Parent p=son; p.setName(new Object());

强行调用会转换异常,也就证明了它实际上调用的是son的setName(String)。

我非要重载怎么办?只能曲线救国,改个名字吧。

public void setName2(String name) { System.out.println("son:" + name); }

继承泛型的参数化

一个泛型类的类型参数不同,称之为泛型的不同参数化。

泛型有一个原则:一个类或类型变量不可成为两个不同参数化的接口类型的子类型。如:

package com.pollyduan.generic; import java.util.Comparator; public class Parent implements Comparator{ @Override public int compare(Object o1, Object o2) { return 0; } } public class Son extends Parent implements Comparator { }

这样是没有问题的。如果增加了泛型参数化:

package com.pollyduan.generic; import java.util.Comparator; public class Parent implements Comparator<Parent>{ @Override public int compare(Parent o1, Parent o2) { return 0; } } package com.pollyduan.generic; import java.util.ArrayList; import java.util.Comparator; public class Son extends Parent implements Comparator<Son> { //The interface Comparator cannot be implemented more than once with different arguments }

原因是Son实现了两次Comparator<T>,擦除后均为Comparator<Object>,造成了冲突。

通配符类型

通配符是在泛型类使用时的一种机制,不能用在泛型定义时的泛型表达式中(这是泛型类型参数限定符)。

子类型通配符

如果P是S的超类,那么 Pair<S>就是Pair<? extends P>的子类型,通配符就是为了解决这个问题的。

这称为子类型限定通配符,又称上边界通配符(upper bound wildcard Generics),代表继承它的所有子类型,通配符匹配的类型不允许作为参数传入,只能作为返回值。

public static void test1() { Parent<Integer> bean1 = new Parent<Integer>(); bean1.setName(123); Parent<? extends Number> bean2 = bean1; Integer i = 100; bean2.setName(i);// 编译错误 Number s = bean2.getName(); System.out.println(s); }

getName()的合理性:

无论bean2指向的是任何类型的对象,只要是Number的子类型,都可以用Number类型变量接收。

为什么setName(str)会抛出异常呢?

1. <? extends Number> 表明了入参是Number的子类型; 2. 那么bean2 可以指向Parent<Integer>,也可以指向Parent<Double>,这都是符合规则的; 3. 再看setName(<? extends Number>),逻辑上传入Integer或者Double对象都是符合逻辑的; 4. 如果bean2指向的是Parent<Integer>,而传入的对象是Double的,两个看似合理的规则到一起就不行了。 5. 因此,jdk无法保证类型的安全性,干脆不允许这样——不允许泛型的子类型通配类型作为入参。

超类型通配符

与之对应的是超类型 Pair<? super P>,又称下边界通配符(lower bound wildcard Generics),通配符匹配的类型可以为方法提供参数,不能得到返回值。

public static void test2() { public static void test2() { Parent<Number> bean1 = new Parent<Number>(); bean1.setName(123); Parent<? super Integer> bean2 = bean1; Integer i = 100; bean2.setName(i); Integer s = bean2.getName();// 编译错误 Object o = bean2.getName();// ok System.out.println(o); } }

setName的可行性:

1. 无论bean2指向Parent<Number>,Parent<Integer>还是Parent<Object>都是允许的; 2. 都可以传入IntegerInteger的子类型。

getName为毛报错?

1. 由于限定类型的超类可能有很多,getName返回类型不可预知,如Integer 或其父类型Number/OtherParentClass...都无法保证类型检查的安全。 2. 但是由于Java的所有对象的顶级祖先类都是Object,因此可以用Object获取getName返回值。

无限定通配符

Pair<?> 就是 Pair<? extends Object>

因此,无限定通配符可以作为返回值,不可做入参。

返回值只能保存在Object中。

P<?> 和P

Pair可以调用setter方法,这是它和Pair<?>最重要的区别。

P<?> 不等于 P<Object>

P<Object>P<?>的子类。

类型通配符小结

1. 限定通配符总是包括自己;
2. 子类型通配符:set方法受限,只可读,不可写; 3. 超类型通配符:get方法受限,不可读(Object除外),只可写; 4. 无限定通配符,只可读不可写; 5. 如果你既想存,又想取,那就别用通配符; 6. 不可同时声明子类型和超类型限定符,及extendssuper只能出现一个。

通配符的受限只针对setter(T)T getter(),如果定义了一个setter(Integer)这种具体类型参数的方法,无限制。

通配符捕获

通配符限定类中可以使用T,编译器适配类型。

有一个键值对的泛型类:

@Data
class Pair<T> { private T key; private T value; }

使用通配类型创建一个swap方法交换key-value,交换时需要先使用一个临时变量保存一个字段:

public static void swap(Pair<?> p){ // ? k=p.getKey();//error,?不可作为具体类型限定符 Object k=p.getKey();//好吧,换成object,ok p.setKey(p.getValue());//but,通配符类型不可做入参 p.setValue(k); }

这里有一个办法解决它,再封装一个swapHelper():

private static <T> void swapHelper(Pair<T> p){ T k=p.getKey(); p.setKey(p.getValue()); p.setValue(k); } public static void swap(Pair<?> p){ swapHelper(p); }

这种方式,称为:通配符捕获,用一个Pair<T> 来捕获 Pair<?>中的类型。

注:

当然,你完全可以直接使用swapHelper,这里只是为了说明这样一种捕获机制。

只允许捕获单个、确定的类型,如:ArrayList<Pair<?>> 是无法使用 ArrayList<Pair<T>> 捕获的。

泛型与继承

继承的原则

继承泛型类时,必须对父类中的类型参数进行初始化。或者说父类中的泛型参数必须在子类中可以确定具体类型。

例如:有一个泛型类Parent<T>,那么Son类定义时有两种方式初始化父类型的类型参数:

1 用具体类型初始化:

public class Son extends Parent<String>{}

2 用子类中的泛型类型初始化父类:

public class Son<T> extends Parent<T>{}

Pair<P>Pair<S>

无论P和S有什么继承关系,一般Pair<P>Pair<S>没什么关系。

Pair<Son> s=new Pair<>(); Pair<Parent> p=s;//error

Parent<T>Son<T>

泛型类自身可以继承其他类或实现接口,如 List<T>实现ArrayList<T>

泛型类可以扩展泛型类或接口,如ArrayList<T> 实现了 List<T>,此时ArrayList<T>可以转换为List<T>。这是安全的。

Parent<T>Parent

Parent<T>随时都可以转换为原生类型Parent,但需要注意类型检查的安全性。

package com.pollyduan.generic; import java.io.File; class Parent<T> { private T name; public T getName() { return name; } public void setName(T name) { this.name = name; } public static void main(String[] args) { Parent<String> p1=new Parent<>(); p1.setName("tom"); System.out.println(p1.getName()); Parent p2=p1; p2.setName(new File("1.txt"));//严重error System.out.println(p2.getName()); } }

运行没有异常,注意。

Person<? extends XXX>

严格讲通配符限定的泛型对象不属于继承范畴,但使用中有类似继承的行为。

SonParent的子类型,那么Person<? extends Son>就是Person<? extends Parent> 的子类型。

Person<? extends Object> 等同于 Person<?>,那么基于上以规则可以推断:Person<? extends Parent> 是 Person<?> 的子类型。

Person<Object> 是 Person<?> 的子类型。

泛型与反射

泛型相关的反射

有了泛型机制,jdk的reflect包中增加了几个泛型有关的类:

Class<T>.getGenericSuperclass() 获取泛型超类 ParameterizedType 类型参数实体类

实例

基于泛型的通用JDBC DAO。

User.java

package com.pollyduan.generic; @Data public class User { private Integer id; private String name; }

AbstractBaseDaoImpl.java

package com.pollyduan.generic; public abstract class AbstractBaseDaoImpl<T> { public AbstractBaseDaoImpl() { Type t = getClass().getGenericSuperclass(); System.out.println(t); } }

UserDaoImpl.java

package com.pollyduan.generic; public class UserDaoImpl extends AbstractBaseDaoImpl<User> { public static void main(String[] args) { UserDaoImpl userDao=new UserDaoImpl(); } }

运行UserDaoImpl.main(),输出:

com.pollyduan.generic.AbstractBaseDaoImpl<com.pollyduan.generic.User>

可以看到,在抽象类AbstractBaseDaoImpl中可以拿到泛型类的具体类。

从这一机制,可以通过AbstractBaseDaoImpl实现通用的JDBA DAO。

完善AbstractBaseDaoImpl.java

package com.pollyduan.generic; import java.lang.reflect.Field; import java.lang.reflect.ParameterizedType; import java.lang.reflect.Type; import java.util.Arrays; import java.util.HashMap; import java.util.Map; import java.util.stream.Collectors; public abstract class AbstractBaseDaoImpl<T, K> { private Class<T> entityClass; private Class<T> primaryKeyClass; public AbstractBaseDaoImpl() { Type t = getClass().getGenericSuperclass(); ParameterizedType pt = (ParameterizedType) t; Type[] typeParameters = pt.getActualTypeArguments(); entityClass = (Class<T>) typeParameters[0]; primaryKeyClass = (Class<T>) typeParameters[1]; } public void save(T t) { StringBuilder sb = new StringBuilder("INSERT INTO "); sb.append(entityClass.getSimpleName()); sb.append("("); Field[] fields = entityClass.getDeclaredFields(); String fieldNames = Arrays.asList(fields).stream().map(x -> x.getName()).collect(Collectors.joining(",")); sb.append(fieldNames); sb.append(") VALUES("); sb.append(fieldNames.replaceAll("[^,]+", "?")); sb.append(")"); System.out.println(sb.toString()); //根据反射还要遍历fields处理变量绑定,略。 } public void delete(K k) { StringBuilder sb = new StringBuilder("DELETE FROM "); sb.append(entityClass.getSimpleName()); sb.append(" WHERE ID=?");// 这里默认主键名为id,应该配合注解动态获取主键名 System.out.println(sb.toString()); } public void update(T t) { StringBuilder sb = new StringBuilder("UPDATE "); sb.append(entityClass.getSimpleName()); sb.append(" SET "); Field[] fields = entityClass.getDeclaredFields(); for (int i = 0; i < fields.length; i++) { if (fields[i].getName().toLowerCase().equals("id")) { continue; } sb.append(fields[i].getName()); sb.append("=?"); if (i < fields.length - 1) { sb.append(","); } } sb.append(" WHERE ID=?"); System.out.println(sb.toString()); } public T get() throws Exception { T t = null; // 模拟resultset Map<String, Object> rs = newHashMap<>(); t = entityClass.newInstance();Field[] fields = entityClass.getDeclaredFields();for(Field field : fields){ field.setAccessible(true); field.set(t, rs.get(field.getName()));}return t;}publicstaticvoid main(String[] args){UserDaoImpl userDao=newUserDaoImpl();User user1=newUser(); userDao.save(user1); userDao.delete(1); userDao.update(user1);try{User user2=userDao.get();System.out.println(user2);}catch(Exception e){ e.printStackTrace();}}}

有现成的ORM框架可用,这里就意思意思得了。输出:

INSERT INTO User(id,name) VALUES(?,?) DELETE FROM User WHERE ID=? UPDATE User SET name=? WHERE ID=? User(id=1, name=Peter)



猜你喜欢

转载自www.cnblogs.com/banxian-yi/p/10579484.html