JAVA中PRIORITYQUEUE详解

Java中PriorityQueue通过二叉小顶堆实现,可以用一棵完全二叉树表示。本文从Queue接口函数出发,结合生动的图解,深入浅出地分析PriorityQueue每个操作的具体过程和时间复杂度,将让读者建立对PriorityQueue建立清晰而深入的认识。

总体介绍

前面以Java ArrayDeque为例讲解了Stack和Queue,其实还有一种特殊的队列叫做PriorityQueue,即优先队列。优先队列的作用是能保证每次取出的元素都是队列中权值最小的(Java的优先队列每次取最小元素,C++的优先队列每次取最大元素)。这里牵涉到了大小关系,元素大小的评判可以通过元素本身的自然顺序(natural ordering),也可以通过构造时传入的比较器(Comparator,类似于C++的仿函数)。

Java中PriorityQueue实现了Queue接口,不允许放入null元素;其通过堆实现,具体说是通过完全二叉树(complete binary tree)实现的小顶堆(任意一个非叶子节点的权值,都不大于其左右子节点的权值),也就意味着可以通过数组来作为PriorityQueue的底层实现。
在这里插入图片描述
上图中我们给每个元素按照层序遍历的方式进行了编号,如果你足够细心,会发现父节点和子节点的编号是有联系的,更确切的说父子节点的编号之间有如下关系:

leftNo = parentNo*2+1

rightNo = parentNo*2+2

parentNo = (nodeNo-1)/2

通过上述三个公式,可以轻易计算出某个节点的父节点以及子节点的下标。这也就是为什么可以直接用数组来存储堆的原因。

PriorityQueue的peek()和element操作是常数时间,add(), offer(), 无参数的remove()以及poll()方法的时间复杂度都是log(N)。

方法剖析

add()和offer()

add(E e)和offer(E e)的语义相同,都是向优先队列中插入元素,只是Queue接口规定二者对插入失败时的处理不同,前者在插入失败时抛出异常,后则则会返回false。对于PriorityQueue这两个方法其实没什么差别。
在这里插入图片描述
新加入的元素可能会破坏小顶堆的性质,因此需要进行必要的调整。

    //offer(E e)
    public boolean offer(E e) {
        if (e == null)//如果放入的元素是null,则抛出空指针异常(不允许放入null元素)
            throw new NullPointerException();
        modCount++;
        int i = size;//i为临时存储size
        if (i >= queue.length) //1.如果长度大于等于队列本身长度,就自动扩容
            grow(i + 1);//自动扩容
        size = i + 1;
        if (i == 0)					//2.如果队列原来为空,这是插入的第一个元素
            queue[0] = e;
        else							//3.队列既不用扩容,又不为空,就调整队列的顺序
            siftUp(i, e);//调整
        return true;
    }

上述代码中,扩容函数grow()类似于ArrayList里的grow()函数,就是再申请一个更大的数组,并将原数组的元素复制过去,这里不再赘述。需要注意的是siftUp(int k, E x)方法,该方法用于插入元素x并维持堆的特性。

    //siftUp()
    private void siftUp(int k, E x) { //k为新加入的节点下标,x为新加入的元素
        while (k > 0) {
            int parent = (k - 1) >>> 1;//等价于parentNo = (nodeNo-1)/2,算出父节点的节点下标
            Object e = queue[parent];//取出父节点的值e
            if (comparator.compare(x, (E) e) >= 0)//调用比较器的比较方法,比较新加入元素x和父节点的e
                break;							  //1.如果新加入节点大于父节点元素,break不再继续移动
            queue[k] = e;					//2.如果小于,子节点的下标k存入父节点的值
            k = parent;						//2.k变成父节点的下标
        }
        queue[k] = x;						//2.最顶级的父节点的下标k存入新加入元素的值
    }

新加入的元素x可能会破坏小顶堆的性质,因此需要进行调整。调整的过程为:从k指定的位置开始,将x逐层与当前点的parent进行比较并交换,直到满足x >= queue[parent]为止。注意这里的比较可以是元素的自然顺序,也可以是依靠比较器的顺序。

扫描二维码关注公众号,回复: 5567864 查看本文章
element()和peek()

element()和peek()的语义完全相同,都是获取但不删除队首元素,也就是队列中权值最小的那个元素,二者唯一的区别是当方法失败时前者抛出异常,后者返回null。根据小顶堆的性质,堆顶那个元素就是全局最小的那个;由于堆用数组表示,根据下标关系,0下标处的那个元素既是堆顶元素。所以直接返回数组0下标处的那个元素即可。
在这里插入图片描述
代码也就非常简洁:

    //peek()
    public E peek() {
        if (size == 0)
            return null;
        return (E) queue[0];//0下标处的那个元素就是最小的那个
    }
remove()和poll()

remove()和poll()方法的语义也完全相同,都是获取并删除队首元素,区别是当方法失败时前者抛出异常,后者返回null。由于删除操作会改变队列的结构,为维护小顶堆的性质,需要进行必要的调整。

PriorityQueue_poll.png
代码如下:

    public E poll() {
        if (size == 0)
            return null;
        int s = --size;
        modCount++;
        E result = (E) queue[0];//0下标处的那个元素就是最小的那个
        E x = (E) queue[s];		//队列尾部的那个元素的值赋值到x
        queue[s] = null;			//队列下标为s的置为null
        if (s != 0)
            siftDown(0, x);//调整
        return result;
    }

上述代码首先记录0下标处的元素,并用最后一个元素替换0下标位置的元素,之后调用siftDown()方法对堆进行调整,最后返回原来0下标处的那个元素(也就是最小的那个元素)。重点是siftDown(int k, E x)方法,该方法的作用是从k指定的位置开始,将x逐层向下与当前点的左右孩子中较小的那个交换,直到x小于或等于左右孩子中的任何一个为止。

    //siftDown()
    private void siftDown(int k, E x) {
        int half = size >>> 1;
        while (k < half) {
            //首先找到左右孩子中较小的那个,记录到c里,并用child记录其下标
            int child = (k << 1) + 1;//leftNo = parentNo*2+1
            Object c = queue[child];
            int right = child + 1;
            if (right < size && comparator.compare((E) c, (E) queue[right]) > 0)
                c = queue[child = right];
            if (comparator.compare(x, (E) c) <= 0)
                break;
            queue[k] = c;	//然后用c取代原来的值@@@小的数字往上移动,赋值到父节点上
            k = child;  	//顶点的下标从父节点的下标变成子节点中那个较小的下标
        }
        queue[k] = x;		//@@@大的数字往下移动,赋值到子节点上
    }
remove(Object o)

remove(Object o)方法用于删除队列中跟o相等的某一个元素(如果有多个相等,只删除一个),该方法不是Queue接口内的方法,而是Collection接口的方法。由于删除操作会改变队列结构,所以要进行调整;又由于删除元素的位置可能是任意的,所以调整过程比其它函数稍加繁琐。具体来说,remove(Object o)可以分为2种情况:1. 删除的是最后一个元素。直接删除即可,不需要调整。2. 删除的不是最后一个元素,从删除点开始以最后一个元素为参照调用一次siftDown()即可。此处不再赘述。

PriorityQueue_remove2.png

具体代码如下:

    //remove(Object o)
    public boolean remove(Object o) {
        //通过遍历数组的方式找到第一个满足o.equals(queue[i])元素的下标
        int i = indexOf(o);
        if (i == -1)
            return false;
        int s = --size;
        if (s == i) //情况1
            queue[i] = null;
        else {
            E moved = (E) queue[s];
            queue[s] = null;
            siftDown(i, moved);//情况2
            ......
        }
        return true;
    }

猜你喜欢

转载自blog.csdn.net/GeekLeee/article/details/88549789
今日推荐