#欧拉函数,整除分块#洛谷 1447 JZOJ 2225 能量采集

版权声明:本文为博主原创文章,未经博主允许不得转载。 https://blog.csdn.net/sugar_free_mint/article/details/87256433

题目

i = 1 n j = 1 m 2 × g c d ( i , j ) 1 \sum_{i=1}^n\sum_{j=1}^m2\times gcd(i,j)-1


分析

原式= 2 × ( i = 1 n j = 1 m g c d ( i , j ) ) n m 2\times(\sum_{i=1}^n\sum_{j=1}^mgcd(i,j))-nm
重点就是 i = 1 n j = 1 m g c d ( i , j ) \sum_{i=1}^n\sum_{j=1}^mgcd(i,j)
= i = 1 n j = 1 m k g c d ( i , j ) φ ( k ) ( ) =\sum_{i=1}^n\sum_{j=1}^m\sum_{k|gcd(i,j)}\varphi(k)(欧拉定理)
= i = 1 n j = 1 m k i , k j φ ( k ) =\sum_{i=1}^n\sum_{j=1}^m\sum_{k|i,k|j}\varphi(k)
= k = 1 m i n ( n , m ) φ ( k ) n k m k =\sum_{k=1}^{min(n,m)}\varphi(k)\lfloor\frac{n}{k}\rfloor\lfloor\frac{m}{k}\rfloor
那么原式 = 2 × k = 1 m i n ( n , m ) φ ( k ) n k m k n m =2\times\sum_{k=1}^{min(n,m)}\varphi(k)\lfloor\frac{n}{k}\rfloor\lfloor\frac{m}{k}\rfloor-nm
那么就可以用整除分块求解,然而也快不了多少


代码

#include <cstdio>
#define rr register
#define min(a,b) ((a)<(b)?(a):(b))
using namespace std;
typedef long long ll;
ll n,m,t,ans,phi[100001],v[100001],prime[10001],cnt;
inline void init(int N){
    phi[1]=1;
    for (rr int i=2;i<=N;++i){
        if (!v[i]) phi[i]=(prime[++cnt]=v[i]=i)-1;
        for (rr int j=1;j<=cnt&&prime[j]*i<=N;++j){
            v[i*prime[j]]=prime[j];
            if (i%prime[j]) phi[i*prime[j]]=phi[i]*(prime[j]-1);
                else {phi[i*prime[j]]=phi[i]*prime[j]; break;}
        }
    }
    for (rr int i=2;i<=N;++i) phi[i]+=phi[i-1];
}
signed main(){
    scanf("%lld%lld",&n,&m);
    init(t=min(n,m));
    for (rr ll l=1,r;l<=t;l=r+1){
        r=min(n/(n/l),m/(m/l));
        ans+=(phi[r]-phi[l-1])*(n/l)*(m/l);
    }
    printf("%lld",2*ans-n*m);
    return 0;
}

猜你喜欢

转载自blog.csdn.net/sugar_free_mint/article/details/87256433