TCP Socket: shutdown VS close

shoutshwn 半断开 close读写都关闭

tcp断开的三个等待

  •     发送fin后的等待ack
  •    ack后等待对方发送fin,返回ack
  •    ack后等待2ms,确保对方已经接收ack


shutdown & close

  Muduo TcpConnection 没有提供 close,而只提供 shutdown ,这么做是为了收发数据的完整性

  TCP 是一个全双工协议,同一个文件描述符既可读又可写, shutdownWrite() 关闭了“写”方向的连接,保留了“读”方向,这称为 TCP half-close。如果直接 close(socket_fd),那么 socket_fd 就不能读或写了。

  用 shutdown 而不用 close 的效果是,如果对方已经发送了数据,这些数据还“在路上”,那么 muduo 不会漏收这些数据。换句话说,muduo 在 TCP 这一层面解决了“当你打算关闭网络连接的时候,如何得知对方有没有发了一些数据而你还没有收到?”这一问题。当然,这个问题也可以在上面的协议层解决,双方商量好不再互发数据,就可以直接断开连接。

  等于说 muduo 把“主动关闭连接”这件事情分成两步来做,如果要主动关闭连接,它会先关本地“写”端,等对方关闭之后,再关本地“读”端

练习:阅读代码,回答“如果被动关闭连接,muduo 的行为如何?”

提示:muduo 在 read() 返回 0 的时候会回调 connection callback,这样客户代码就知道对方断开连接了。

  Muduo 这种关闭连接的方式对对方也有要求,那就是对方 read() 到 0 字节之后会主动关闭连接(无论 shutdownWrite() 还是 close()),一般的网络程序都会这样,不是什么问题。当然,这么做有一个潜在的安全漏洞,万一对方故意不不关,那么 muduo 的连接就一直半开着,消耗系统资源。

  完整的流程是:我们发完了数据,于是 shutdownWrite,发送 TCP FIN 分节,对方会读到 0 字节,然后对方通常会关闭连接,这样 muduo 会读到 0 字节,然后 muduo 关闭连接。(思考题,在 shutdown() 之后,muduo 回调 connection callback 的时间间隔大约是一个 round-trip time,为什么?)

  另外,如果有必要,对方可以在 read() 返回 0 之后继续发送数据,这是直接利用了 half-close TCP 连接。muduo 会收到这些数据,通过 message callback 通知客户代码。

  那么 muduo 什么时候真正 close socket 呢?在 TcpConnection 对象析构的时候。TcpConnection 持有一个 Socket 对象,Socket 是一个 RAIIhandler,它的析构函数会 close(sockfd_)。这样,如果发生 TcpConnection 对象泄漏,那么我们从 /proc/[pid]/fd/ 就能找到没有关闭的文件描述符,便于查错。

  muduo 在 read() 返回 0 的时候会回调 connection callback,然后把 TcpConnection 的引用计数减一,如果 TcpConnection 的引用计数降到零,它就会析构了。

 

参考:

《TCP/IP 详解》第一卷第 18.5 节,TCP Half-Close。

《UNIX 网络编程》第一卷第三版第 6.6 节, shutdown() 函数。

 

TCP连接的建立与释放:

  • 序号:本报文段所发送的数据的第一个字节的序号。
  • 确认号ack期待收到对方下一个报文段的第一个数据字节的序号
  • 确认ACK:占1位,仅当ACK=1时,确认号字段才有效。ACK=0时,确认号无效
  • 同步SYN:连接建立时用于同步序号。当SYN=1,ACK=0时表示:这是一个连接请求报文段。若同意连接,则在响应报文段中使得SYN=1,ACK=1。因此,SYN=1表示这是一个连接请求(ACK=0),或连接接受报文(ACK=1)
  • 终止FIN:用来释放一个连接。FIN=1表示:此报文段的发送方的数据已经发送完毕,并要求释放运输连接

  还要再发送一次确认是为了,防止已失效的连接请求报文段突然又传到了B,因而产生错误(主要是B的资源浪费,如果仅仅采用两次握手)。

  已失效的报文段(滞留过的被抢先的游子报文):正常情况下:A发出连接请求,但因为丢失了,故而不能收到B的确认。于是A重新发出请求,然后收到确认,建立连接,数据传输完毕后,释放连接,A发了2个,一个丢掉,一个到达,没有“已失效的报文段”。但是,某种情况下,A的第一个在某个节点滞留了,延误到达,本来这是一个早已失效的报文段,但是在A发送第二个,并且得到B的回应,建立了连接以后,这个报文段竟然到达了,于是B就认为,A又发送了一个新的请求,于是发送确认报文段,同意建立连接,假若没有三次的握手,那么这个连接就建立起来了(有一个请求和一个回应),此时,A收到B的确认,但A知道自己并没有发送建立连接的请求,因为不会理睬B的这个确认,于是呢,A也不会发送任何数据,而B呢却以为新的连接建立了起来,一直等待A发送数据给自己,此时B的资源就被白白浪费了。但是采用三次握手的话,A就不发送确认,那么B由于收不到确认,也就知道并没有要求建立连接。

  B收到连接释放报文段后就立即发送确认,然后就进入close-wait状态,此时TCP服务器进程就通知高层应用进程(内核有机制接收,至于USERSPACE是不是有策略来使用就另当别论),因而从A到B的连接就释放了。此时是“半关闭”状态。即A不可以发送给B,但是B可以发送给A。

  此时,若B没有数据报要发送给A了,其应用进程就通知TCP释放连接,然后发送给A连接释放报文段,并等待确认。

  A发送确认后,进入time-wait,注意,此时TCP连接还没有释放掉,然后经过时间等待计时器设置的2MSL后,A才进入到close状态。

  为什么要等待呢?

  ①、为了保证A发送的最后一个ACK报文段能够到达B。即最后这个确认报文段很有可能丢失,那么B会超时重传,然后A再一次确认,同时启动2MSL计时器,如此下去。如果没有等待时间,发送完确认报文段就立即释放连接的话,B就无法重传了(连接已被释放,任何数据都不能重传了),因而也就收不到确认,就无法按照步骤进入CLOSE状态,即B必须收到确认才能close

  ②、防止“已失效的连接请求报文段”出现在连接中。经过2MSL,那些在这个连接持续的时间内,产生的所有报文段就可以都从网络中消失。即在这个连接释放的过程中会有一些无效的报文段滞留在楼阁结点,但是呢,经过2MSL这些无效报文段就肯定可以发送到目的地,不会滞留在网络中。这样的话,在下一个连接中就不会出现上一个连接遗留下来的请求报文段了。

可以看出:B结束TCP连接的时间比A早一点,因为B收到确认就断开连接了,而A还得等待2MSL.


  1.为什么建立连接协议是三次握手,而关闭连接却是四次握手呢?

  这是因为服务端的LISTEN状态下的SOCKET当收到SYN报文的建连请求后,它可以把ACKSYNACK起应答作用,而SYN起同步作用)放在一个报文里来发送。但关闭连接时,当收到对方的FIN报文通知时,它仅仅表示对方没有数据发送给你了;但未必你所有的数据都全部发送给对方了,所以你可以未必会马上会关闭SOCKET,也即你可能还需要发送一些数据给对方之后,再发送FIN报文给对方来表示你同意现在可以关闭连接了,所以它这里的ACK报文和FIN报文多数情况下都是分开发送的。

  2.为什么TIME_WAIT状态还需要等2MSL后才能返回到CLOSED状态?

  这是因为虽然双方都同意关闭连接了,而且握手的4个报文也都协调和发送完毕,按理可以直接回到CLOSED状态(就好比从SYN_SEND状态到ESTABLISH状态那样);但是因为我们必须要假想网络是不可靠的,你无法保证你最后发送的ACK报文会一定被对方收到,因此对方处于LAST_ACK状态下的SOCKET可能会因为超时未收到ACK报文,而重发FIN报文,所以这个TIME_WAIT状态的作用就是用来重发可能丢失的ACK报文。

猜你喜欢

转载自blog.csdn.net/linux_vae/article/details/79384195