LTE学习笔记

本文转载自https://blog.csdn.net/jyqxerxes/article/details/79052617

maybe重点:逻辑信道,传输信道,物理信道的映射关系

信道的含义:信道是不同类型的信息,按照不同传输格式、用不同的物理资源承载的信息通道。根据信息类型的不同、处理过程的不同可将信道分为多种类型

广义地讲,发射端信源信息经过层三、层二、物理层处理,在通过无线环境到接收端,经过物理层、层二、层三的处理被用户高层所识别的全部环节,就是信道。

信道就是信息处理的流水线。上一道工序和下一道工序是相互配合、相互支撑的关系。上一道工序把自己处理完的信息交给下一道工序时,要有一个双方都认可的标准,这个标准就是业务接入点(Service Access Point,SAP

协议的层与层之间需要这样的业务接入点,SAP就是狭义的信道

无线信道的结构:

逻辑信道关注的是传输什么内容,什么类别的信息。信息首先要被分为两种类型:控制消息(控制平面的信令,如广播类消息、寻呼类消息)和业务消息(业务平面的消息,承载着高层传来的实际数据)。逻辑信道是高层信息传到MAC层的SAP。

传输信道关注的是怎样传?形成怎样的传输块(TB)?不同类型的传输信道对应的是空中接口上不同信号的基带处理方式,如调制编码方式、交织方式、冗余校验方式、空间复用方式等内容。根据对资源占有的程度不同,传输信道还可以分为共享信道和专用信道。前者就是多个用户共同占用信道资源,而后者就是由某一个用户独占信道资源

与MAC层强相关的信道有传输信道和逻辑信道。传输信道是物理层提供给MAC层的服务,MAC可以利用传输信道向物理层发送和接受数据;而逻辑信道则是MAC层向RLC层提供的服务,RLC层可以使用逻辑信道向MAC层发送和接受数据。

MAC层一般包括很多功能模块,如传输调度模块、MBMS功能模块、传输块TB产生模块等。经过MAC层处理的消息向上传给RLC层的业务接入点,要变成逻辑信道的消息;向下传送到物理层的业务接入点,要变成传输信道的消息

物理信道就是信号在无线环境中传送的方式,即空中接口的承载媒体。物理信道对应的是实际的射频资源,如时隙(时间)、子载波(频率)、天线口(空间)。物理信道就是确定好编码交织方式、调制方式,在特定的频域、时域、空域上发送数据的无线通道。根据物理信道所承载的上层信息不同,定义了不同类型的物理信道

逻辑:信令和业务信息,传输,实际上的调制解调,交织方式,空间复用方式方式等  物理信道是实际上的射频资源,如时隙(时间),子载波(频率),天线口(空间)

逻辑信道:根据传送消息的不同类型,逻辑信道分为两类:控制信道业务信道

传输信道:定义了空中接口中数据传输的方式和特性。传输信道可以配置物理层的很多实现细节,同时物理层可以通过传输信道为MAC层提供服务。传输信道关注的不是传什么,而是怎么传

UMTS的传输信道分为两类:专用信道和公共信道。公共信道资源是小区内的所有用户或一组用户共同分配使用的;而专用信道是由单个用户使用的资源。

LTE的传输信道没有定义专用信道,都属于公共信道(大家都可以用)或共享信道(大家可以同时用)。

LTE传输信道只有公共信道,一个可行的分类方法是将LTE传输信道分为上行和下行信道。但LTE的共享信道(SCH)支持上、下行两个方向,为了区别,将SCH分为DL-SCH和UL-SCH。

物理信道是高层信息在无线环境中的实际承载。在LTE中,物理信道是由一个特定的子载波、时隙、天线口确定的。即在特定的天线口上,对应的是一系列无线时频资源(Resource Element,RE)。

一个物理信道是有开始时间、结束时间、持续时间的。物理信道在时域上可以是连续的,也可以是不连续的。连续的物理信道持续时间由开始时刻到结束时刻,不连续的物理信道则须明确指示清楚由哪些时间片组成。

在LTE中,度量时间长度的单位是采样周期Ts。UMTS中度量时间长度的单位则是码片周期Tchip。物理信道主要用来承载传输信道来的数据,但还有一类物理信道无须传输信道的映射,直接承载物理层本身产生的控制信令或物理信令(下行:PDCCH、RS、SS;上行:PUCCH、RS。这些物理信令和传输信道映射的物理信道一样,是有着相同的空间载体的。可以支持物理信道的功能。

物理信道一般要进行两大处理过程:比特级处理和符号级处理

从发射端角度看,比特级处理是物理信道数据处理的前端,主要是在二进制比特数据流上添加CRC校验;进行信道编码、交织、速率匹配以及加扰。

加扰之后进行的是符号级处理,包括调制、层映射、预编码、资源块映射、天线发送等过程。

在接收端先进性的是符号级处理,然后是比特级处理,处理顺序与发射端不同。

物理信号是物理层产生并使用的、有特定用途的一系列无线资源单元(Resource Element)。物理信号并不携带从高层来的任何信息,类似没有高层背景的底层员工,配合其他员工工作时,彼此约定好使用的信号。它们对高层而言不是直接可见的,即不存在高层信道的映射关系,但从系统观点来讲是必须的。

下行方向上定义了两种物理信号:参考信号(Reference Signal,RS)和同步信号(Synchronization Signal,SS)。

上行方向上,只定义了一种物理信号:参考信号(RS)。

信道映射是指逻辑信道、传输信道、物理信道之间的对应关系,这种对应关系包括底层信道对高层信道的服务支撑关系及高层信道对底层信道的控制命令关系。

LTE的信道映射关系如图所示。

从图中可以看出LTE信道映射的关系有以下几个规律:

(1)高层一定需要底层的支撑,工作需要落地;

(2)底层不一定都和上面有关系,只要干好自己分内的活,无须全部走上层路线;

(3)无论传输信道还是物理信道,共享信道干的活种类最多;

(4)由于信道简化、信道职能加强,映射关系变得更加清晰,传输信道DL/UL-SCH功能强大,物理信道PUSCH、PDSCH比UMTS干活的信道增强了很多。

猜你喜欢

转载自blog.csdn.net/qq_37312720/article/details/88167726