环形缓冲区类(C++)绝对可用(转)

读写锁版本(推荐):https://blog.csdn.net/yunandsha/article/details/80925429

参考网络循环缓冲区类源码,修改了作者的两个bug,经测试,可以实现多线程并发读写。数据准确无误。

多线程并行读写环形缓冲区源代码例子
代码例子下载:环形缓冲区VC+Qt的项目代码
理论如下:
在这里插入图片描述
源码如下:
CCycleBuffer.h
//环形缓冲区头文件

//环形缓冲区头文件

#ifndef CCycleBuffer_H
#define CCycleBuffer_H
class CCycleBuffer
{
public:
	bool isFull();
	bool isEmpty();
	void empty();
	int getLength();
	CCycleBuffer(int size);
	virtual~CCycleBuffer();
	int write(char* buf, int count);
	int read(char* buf, int count);
	int getStart()
	{
		return m_nReadPos;
	}
	int getEnd()
	{
		return m_nWritePos;
	}

private:
	bool m_bEmpty, m_bFull;
	char* m_pBuf;
	int m_nBufSize;
	int m_nReadPos;
	int m_nWritePos;
	int test;
};
#endif// CCycleBuffer_H

CCycleBuffer.c

//环形缓冲区源文件
//尽量用C运行时库代码,改变了原作者基于WindowsAPI的代码。
//修改了原作者的两处错误,1是read函数最后的else 少了一个leftcount
//第二个错误,是write函数中,m_nWritePos 变量,他重新定义了一个。这些错误编译不会出错。
//但是运行起来,要了亲命啊。

#include "CCycleBuffer.h"
#include <assert.h>
#include <memory.h>
#include <QDebug>
// 定义 
CCycleBuffer::CCycleBuffer(int size)
{
   m_nBufSize = size;
   m_nReadPos = 0;
   m_nWritePos = 0;
   m_pBuf = newchar[m_nBufSize];
   m_bEmpty = true;
   m_bFull = false;
   test = 0;
}

CCycleBuffer::~CCycleBuffer()
{
   delete[] m_pBuf;
}

/************************************************************************/
/* 向缓冲区写入数据,返回实际写入的字节数                               */
/************************************************************************/
int CCycleBuffer::write(char* buf, int count)
{
   if (count <= 0)
   	return0;
   m_bEmpty = false;
   // 缓冲区已满,不能继续写入 
   if (m_bFull)
   {
   	return0;
   }
   else if (m_nReadPos == m_nWritePos)// 缓冲区为空时 
   {
   	/*                          == 内存模型 ==
   	   (empty)             m_nReadPos                (empty)
   	|----------------------------------|-----------------------------------------|
   		   m_nWritePos        m_nBufSize
   	*/
   	int leftcount = m_nBufSize - m_nWritePos;
   	if (leftcount > count)
   	{
   		memcpy(m_pBuf + m_nWritePos, buf, count);
   		m_nWritePos += count;
   		m_bFull = (m_nWritePos == m_nReadPos);
   		return count;
   	}
   	else
   	{
   		memcpy(m_pBuf + m_nWritePos, buf, leftcount);
   		m_nWritePos = (m_nReadPos > count - leftcount) ? count - leftcount : m_nWritePos;
   		memcpy(m_pBuf, buf + leftcount, m_nWritePos);
   		m_bFull = (m_nWritePos == m_nReadPos);
   		return leftcount + m_nWritePos;
   	}
   }
   else if (m_nReadPos < m_nWritePos)// 有剩余空间可写入 
   {
   	/*                           == 内存模型 ==
   	 (empty)                 (data)                     (empty)
   	|-------------------|----------------------------|---------------------------|
   	   m_nReadPos                m_nWritePos       (leftcount)
   	*/
   	// 剩余缓冲区大小(从写入位置到缓冲区尾) 

   	int leftcount = m_nBufSize - m_nWritePos;
   	int test = m_nWritePos;
   	if (leftcount > count)   // 有足够的剩余空间存放 
   	{
   		memcpy(m_pBuf + m_nWritePos, buf, count);
   		m_nWritePos += count;
   		m_bFull = (m_nReadPos == m_nWritePos);
   		assert(m_nReadPos <= m_nBufSize);
   		assert(m_nWritePos <= m_nBufSize);
   		return count;
   	}
   	else       // 剩余空间不足 
   	{
   		// 先填充满剩余空间,再回头找空间存放 
   		memcpy(m_pBuf + test, buf, leftcount);

   		m_nWritePos = (m_nReadPos >= count - leftcount) ? count - leftcount : m_nReadPos;
   		memcpy(m_pBuf, buf + leftcount, m_nWritePos);
   		m_bFull = (m_nReadPos == m_nWritePos);
   		assert(m_nReadPos <= m_nBufSize);
   		assert(m_nWritePos <= m_nBufSize);
   		return leftcount + m_nWritePos;
   	}
   }
   else
   {
   	/*                          == 内存模型 ==
   	 (unread)                 (read)                     (unread)
   	|-------------------|----------------------------|---------------------------|
   		m_nWritePos    (leftcount)    m_nReadPos
   	*/
   	int leftcount = m_nReadPos - m_nWritePos;
   	if (leftcount > count)
   	{
   		// 有足够的剩余空间存放 
   		memcpy(m_pBuf + m_nWritePos, buf, count);
   		m_nWritePos += count;
   		m_bFull = (m_nReadPos == m_nWritePos);
   		assert(m_nReadPos <= m_nBufSize);
   		assert(m_nWritePos <= m_nBufSize);
   		return count;
   	}
   	else
   	{
   		// 剩余空间不足时要丢弃后面的数据 
   		memcpy(m_pBuf + m_nWritePos, buf, leftcount);
   		m_nWritePos += leftcount;
   		m_bFull = (m_nReadPos == m_nWritePos);
   		assert(m_bFull);
   		assert(m_nReadPos <= m_nBufSize);
   		assert(m_nWritePos <= m_nBufSize);
   		return leftcount;
   	}
   }
}

/************************************************************************/
/* 从缓冲区读数据,返回实际读取的字节数                                 */
/************************************************************************/
int CCycleBuffer::read(char* buf, int count)
{
   if (count <= 0)
   	return0;
   m_bFull = false;
   if (m_bEmpty)       // 缓冲区空,不能继续读取数据 
   {
   	return0;
   }
   else if (m_nReadPos == m_nWritePos)   // 缓冲区满时 
   {
   	/*                          == 内存模型 ==
   	 (data)          m_nReadPos                (data)
     |--------------------------------|--------------------------------------------|
   	  m_nWritePos         m_nBufSize
   	*/
   	int leftcount = m_nBufSize - m_nReadPos;
   	if (leftcount > count)
   	{
   		memcpy(buf, m_pBuf + m_nReadPos, count);
   		m_nReadPos += count;
   		m_bEmpty = (m_nReadPos == m_nWritePos);
   		return count;
   	}
   	else
   	{
   		memcpy(buf, m_pBuf + m_nReadPos, leftcount);
   		m_nReadPos = (m_nWritePos > count - leftcount) ? count - leftcount : m_nWritePos;
   		memcpy(buf + leftcount, m_pBuf, m_nReadPos);
   		m_bEmpty = (m_nReadPos == m_nWritePos);
   		return leftcount + m_nReadPos;
   	}
   }
   else if (m_nReadPos < m_nWritePos)   // 写指针在前(未读数据是连接的) 
   {
   	/*                          == 内存模型 ==
   	 (read)                 (unread)                      (read)
   	|-------------------|----------------------------|---------------------------|
   	   m_nReadPos                m_nWritePos                     m_nBufSize
   	*/
   	int leftcount = m_nWritePos - m_nReadPos;
   	int c = (leftcount > count) ? count : leftcount;
   	memcpy(buf, m_pBuf + m_nReadPos, c);
   	m_nReadPos += c;
   	m_bEmpty = (m_nReadPos == m_nWritePos);
   	assert(m_nReadPos <= m_nBufSize);
   	assert(m_nWritePos <= m_nBufSize);
   	return c;
   }
   else          // 读指针在前(未读数据可能是不连接的) 
   {
   	/*                          == 内存模型 ==
   	   (unread)                (read)                      (unread)
   	|-------------------|----------------------------|---------------------------|
   		m_nWritePos                  m_nReadPos                  m_nBufSize

   	*/
   	int leftcount = m_nBufSize - m_nReadPos;
   	if (leftcount > count)   // 未读缓冲区够大,直接读取数据 
   	{
   		memcpy(buf, m_pBuf + m_nReadPos, count);
   		m_nReadPos += count;
   		m_bEmpty = (m_nReadPos == m_nWritePos);
   		assert(m_nReadPos <= m_nBufSize);
   		assert(m_nWritePos <= m_nBufSize);
   		return count;
   	}
   	else       // 未读缓冲区不足,需回到缓冲区头开始读 
   	{
   		memcpy(buf, m_pBuf + m_nReadPos, leftcount);
   		m_nReadPos = (m_nWritePos >= count - leftcount) ? count - leftcount : m_nWritePos;
   		memcpy(buf + leftcount, m_pBuf, m_nReadPos);
   		m_bEmpty = (m_nReadPos == m_nWritePos);
   		assert(m_nReadPos <= m_nBufSize);
   		assert(m_nWritePos <= m_nBufSize);
   		return leftcount + m_nReadPos;
   	}
   }
}

/************************************************************************/
/* 获取缓冲区有效数据长度                                               */
/************************************************************************/
int CCycleBuffer::getLength()
{
   if (m_bEmpty)
   {
   	return0;
   }
   else if (m_bFull)
   {
   	return m_nBufSize;
   }
   else if (m_nReadPos < m_nWritePos)
   {
   	return m_nWritePos - m_nReadPos;
   }
   else
   {
   	return m_nBufSize - m_nReadPos + m_nWritePos;
   }
}

void CCycleBuffer::empty()
{
   m_nReadPos = 0;
   m_nWritePos = 0;
   m_bEmpty = true;
   m_bFull = false;
}

bool CCycleBuffer::isEmpty()
{
   return m_bEmpty;
}

bool CCycleBuffer::isFull()
{
   return m_bFull;
}

原帖地址:https://blog.csdn.net/devday/article/details/5258697

猜你喜欢

转载自blog.csdn.net/qing666888/article/details/83315303
今日推荐