JVM学习(三)——ClassLoader

ClassLoader 做什么的?

顾名思义,它是用来加载 Class 的。它负责将 Class 的字节码形式转换成内存形式的 Class 对象。字节码可以来自于磁盘文件 *.class,也可以是 jar 包里的 *.class,也可以来自远程服务器提供的字节流,字节码的本质就是一个字节数组 []byte,它有特定的复杂的内部格式。
在这里插入图片描述
有很多字节码加密技术就是依靠定制 ClassLoader 来实现的。先使用工具对字节码文件进行加密,运行时使用定制的 ClassLoader 先解密文件内容再加载这些解密后的字节码。

每个 Class 对象的内部都有一个 classLoader 字段来标识自己是由哪个 ClassLoader 加载的。ClassLoader 就像一个容器,里面装了很多已经加载的 Class 对象。

class Class<T> {
  ...
  private final ClassLoader classLoader;
  ...
}

延迟加载

JVM 运行并不是一次性加载所需要的全部类的,它是按需加载,也就是延迟加载。程序在运行的过程中会逐渐遇到很多不认识的新类,这时候就会调用 ClassLoader 来加载这些类。加载完成后就会将 Class 对象存在 ClassLoader 里面,下次就不需要重新加载了。

比如你在调用某个类的静态方法时,首先这个类肯定是需要被加载的,但是并不会触及这个类的实例字段,那么实例字段的类别 Class 就可以暂时不必去加载,但是它可能会加载静态字段相关的类别,因为静态方法会访问静态字段。而实例字段的类别需要等到你实例化对象的时候才可能会加载。

各司其职

JVM 运行实例中会存在多个 ClassLoader,不同的 ClassLoader 会从不同的地方加载字节码文件。它可以从不同的文件目录加载,也可以从不同的 jar 文件中加载,也可以从网络上不同的静态文件服务器来下载字节码再加载。

JVM 中内置了三个重要的 ClassLoader,分别是 BootstrapClassLoader、ExtensionClassLoader 和 AppClassLoader。

  • Bootstrap classLoader: 称为启动类加载器,是Java类加载层次中最顶层的类加载器,负责加载JDK中的核心类库,如:rt.jar、resources.jar、charsets.jar等。
  • ExtClassLoader: 扩展的class loader,加载位于$JAVA_HOME/jre/lib/ext目录下的扩展jar。
  • AppClassLoader: 系统class loader,父类是ExtClassLoader,加载$CLASSPATH下的目录和jar;它负责加载应用程序主函数类,才是直接面向我们用户的加载器。

除了Java默认提供的三个ClassLoader之外,用户还可以根据需要定义自已的ClassLoader,而这些自定义的ClassLoader都必须继承自java.lang.ClassLoader类,也包括Java提供的另外二个ClassLoader(Extension ClassLoader和App ClassLoader)在内,但是Bootstrap ClassLoader不继承自ClassLoader,因为它不是一个普通的Java类,底层由C++编写,已嵌入到了JVM内核当中,当JVM启动后,Bootstrap ClassLoader也随着启动,负责加载完核心类库后,并构造Extension ClassLoader和App ClassLoader类加载器。

ClassLoader 传递性

程序在运行过程中,遇到了一个未知的类,它会选择哪个 ClassLoader 来加载它呢?虚拟机的策略是使用调用者 Class 对象的 ClassLoader 来加载当前未知的类。何为调用者 Class 对象?就是在遇到这个未知的类时,虚拟机肯定正在运行一个方法调用(静态方法或者实例方法),这个方法挂在哪个类上面,那这个类就是调用者 Class 对象。前面我们提到每个 Class 对象里面都有一个 classLoader 属性记录了当前的类是由谁来加载的。

因为 ClassLoader 的传递性,所有延迟加载的类都会由初始调用 main 方法的这个 ClassLoader 全全负责,它就是 AppClassLoader。

双亲委派

JVM在判定两个class是否相同时,不仅要判断两个类名是否相同,而且要判断是否由同一个类加载器实例加载的。只有两者同时满足的情况下,JVM才认为这两个class是相同的。就算两个class是同一份class字节码,如果被两个不同的ClassLoader实例所加载,JVM也会认为它们是两个不同class。比如网络上的一个Java类org.classloader.simple.NetClassLoaderSimple,javac编译之后生成字节码文件NetClassLoaderSimple.class,ClassLoaderA和ClassLoaderB这两个类加载器并读取了NetClassLoaderSimple.class文件,并分别定义出了java.lang.Class实例来表示这个类,对于JVM来说,它们是两个不同的实例对象,但它们确实是同一份字节码文件,如果试图将这个Class实例生成具体的对象进行转换时,就会抛运行时异常java.lang.ClassCaseException,提示这是两个不同的类型。

原理介绍

ClassLoader使用的是双亲委托模型来搜索类的,每个ClassLoader实例都有一个父类加载器的引用(不是继承的关系,是一个包含的关系),虚拟机内置的类加载器(Bootstrap ClassLoader)本身没有父类加载器,但可以用作其它ClassLoader实例的的父类加载器。当一个ClassLoader实例需要加载某个类时,它会试图亲自搜索某个类之前,先把这个任务委托给它的父类加载器,这个过程是由上至下依次检查的,首先由最顶层的类加载器Bootstrap ClassLoader试图加载,如果没加载到,则把任务转交给Extension ClassLoader试图加载,如果也没加载到,则转交给App ClassLoader 进行加载,如果它也没有加载得到的话,则返回给委托的发起者,由它到指定的文件系统或网络等URL中加载该类。如果它们都没有加载到这个类时,则抛出ClassNotFoundException异常。否则将这个找到的类生成一个类的定义,并将它加载到内存当中,最后返回这个类在内存中的Class实例对象。

为什么要使用双亲委托这种模型呢?

因为这样可以避免重复加载,当父亲已经加载了该类的时候,就没有必要子ClassLoader再加载一次。考虑到安全因素,我们试想一下,如果不使用这种委托模式,那我们就可以随时使用自定义的String来动态替代java核心api中定义的类型,这样会存在非常大的安全隐患,而双亲委托的方式,就可以避免这种情况,因为String已经在启动时就被引导类加载器(Bootstrcp ClassLoader)加载,所以用户自定义的ClassLoader永远也无法加载一个自己写的String,除非你改变JDK中ClassLoader搜索类的默认算法。

Class.forName

当我们在使用 jdbc 驱动时,经常会使用 Class.forName 方法来动态加载驱动类。

Class.forName("com.mysql.cj.jdbc.Driver");

其原理是 mysql 驱动的 Driver 类里有一个静态代码块,它会在 Driver 类被加载的时候执行。这个静态代码块会将 mysql 驱动实例注册到全局的 jdbc 驱动管理器里。

class Driver {
  static {
    try {
       java.sql.DriverManager.registerDriver(new Driver());
    } catch (SQLException E) {
       throw new RuntimeException("Can't register driver!");
    }
  }
  ...
}

forName 方法同样也是使用调用者 Class 对象的 ClassLoader 来加载目标类。不过 forName 还提供了多参数版本,可以指定使用哪个 ClassLoader 来加载。

Class<?> forName(String name, boolean initialize, ClassLoader cl)

通过这种形式的 forName 方法可以突破内置加载器的限制,通过使用自定类加载器允许我们自由加载其它任意来源的类库。根据 ClassLoader 的传递性,目标类库传递引用到的其它类库也将会使用自定义加载器加载。

自定义加载器

ClassLoader 里面有三个重要的方法 loadClass()、findClass() 和 defineClass()。

loadClass() : 加载目标类的入口,它首先会查找当前 ClassLoader 以及它的双亲里面是否已经加载了目标类,如果没有找到就会让双亲尝试加载,如果双亲都加载不了,就会调用 findClass() 让自定义加载器自己来加载目标类。

findClass(): 需要子类来覆盖的,不同的加载器将使用不同的逻辑来获取目标类的字节码。拿到这个字节码之后再调用 defineClass() 方法。

defineClass(): 将字节码转换成 Class 对象。

下面我使用伪代码表示一下基本过程:

class ClassLoader {

  // 加载入口,定义了双亲委派规则
  Class loadClass(String name) {
    // 是否已经加载了
    Class t = this.findFromLoaded(name);
    if(t == null) {
      // 交给双亲
      t = this.parent.loadClass(name)
    }
    if(t == null) {
      // 双亲都不行,只能靠自己了
      t = this.findClass(name);
    }
    return t;
  }

  // 交给子类自己去实现
  Class findClass(String name) {
    throw ClassNotFoundException();
  }

  // 组装Class对象
  Class defineClass(byte[] code, String name) {
    return buildClassFromCode(code, name);
  }
}

class CustomClassLoader extends ClassLoader {

  Class findClass(String name) {
    // 寻找字节码
    byte[] code = findCodeFromSomewhere(name);
    // 组装Class对象
    return this.defineClass(code, name);
  }
}

自定义类加载器不易破坏双亲委派规则,不要轻易覆盖 loadClass 方法。否则可能会导致自定义加载器无法加载内置的核心类库。在使用自定义加载器时,要明确好它的父加载器是谁,将父加载器通过子类的构造器传入。如果父类加载器是 null,那就表示父加载器是「根加载器」。

// ClassLoader 构造器
protected ClassLoader(String name, ClassLoader parent);

双亲委派规则可能会变成三亲委派,四亲委派,取决于你使用的父加载器是谁,它会一直递归委派到根加载器。

Class.forName vs ClassLoader.loadClass

Class.forName(className)方法,内部实际调用的方法是Class.forName(className,true,classloader);第2个boolean参数表示类是否需要初始化, Class.forName(className)默认是需要初始化。一旦初始化,就会触发目标对象的 static块代码执行,static参数也也会被再次初始化。

ClassLoader.loadClass(className)方法,内部实际调用的方法是 ClassLoader.loadClass(className,false);第2个 boolean参数,表示目标对象是否进行链接,false表示不进行链接,由上面介绍可以,不进行链接意味着不进行包括初始化等一些列步骤,那么静态块和静态对象就不会得到执行。

上面提到过JDBC Driver,需要反射类的时候执行static块,所以使用Class.forName(classname)。

钻石依赖

项目管理上有一个著名的概念叫着「钻石依赖」,是指软件依赖导致同一个软件包的两个版本需要共存而不能冲突。
在这里插入图片描述
我们平时使用的 maven 是这样解决钻石依赖的,它会从多个冲突的版本中选择一个来使用,如果不同的版本之间兼容性很糟糕,那么程序将无法正常编译运行。Maven 这种形式叫「扁平化」依赖管理。

使用 ClassLoader 可以解决钻石依赖问题。不同版本的软件包使用不同的 ClassLoader 来加载,位于不同 ClassLoader 中名称一样的类实际上是不同的类。下面让我们使用 URLClassLoader 来尝试一个简单的例子,它默认的父加载器是 AppClassLoader。

$ cat ~/source/jcl/v1/Dep.java
public class Dep {
    public void print() {
        System.out.println("v1");
    }
}

$ cat ~/source/jcl/v2/Dep.java
public class Dep {
 public void print() {
  System.out.println("v1");
 }
}

$ cat ~/source/jcl/Test.java
public class Test {
    public static void main(String[] args) throws Exception {
        String v1dir = "file:///Users/qianwp/source/jcl/v1/";
        String v2dir = "file:///Users/qianwp/source/jcl/v2/";
        URLClassLoader v1 = new URLClassLoader(new URL[]{new URL(v1dir)});
        URLClassLoader v2 = new URLClassLoader(new URL[]{new URL(v2dir)});

  Class<?> depv1Class = v1.loadClass("Dep");
        Object depv1 = depv1Class.getConstructor().newInstance();
        depv1Class.getMethod("print").invoke(depv1);

        Class<?> depv2Class = v2.loadClass("Dep");
        Object depv2 = depv2Class.getConstructor().newInstance();
        depv2Class.getMethod("print").invoke(depv2);

  System.out.println(depv1Class.equals(depv2Class));
 }
}

在运行之前,我们需要对依赖的类库进行编译

$ cd ~/source/jcl/v1
$ javac Dep.java
$ cd ~/source/jcl/v2
$ javac Dep.java
$ cd ~/source/jcl
$ javac Test.java
$ java Test
v1
v2
false

在这个例子中如果两个 URLClassLoader 指向的路径是一样的,下面这个表达式还是 false,因为即使是同样的字节码用不同的 ClassLoader 加载出来的类都不能算同一个类。

depv1Class.equals(depv2Class)

我们还可以让两个不同版本的 Dep 类实现同一个接口,这样可以避免使用反射的方式来调用 Dep 类里面的方法。

Class<?> depv1Class = v1.loadClass("Dep");
IPrint depv1 = (IPrint)depv1Class.getConstructor().newInstance();
depv1.print()

ClassLoader 固然可以解决依赖冲突问题,不过它也限制了不同软件包的操作界面必须使用反射或接口的方式进行动态调用。Maven 没有这种限制,它依赖于虚拟机的默认懒惰加载策略,运行过程中如果没有显示使用定制的 ClassLoader,那么从头到尾都是在使用 AppClassLoader,而不同版本的同名类必须使用不同的 ClassLoader 加载,所以 Maven 不能完美解决钻石依赖。 如果你想知道有没有开源的包管理工具可以解决钻石依赖的,我推荐你了解一下 sofa-ark,它是蚂蚁金服开源的轻量级类隔离框架。

分工与合作

这里我们重新理解一下 ClassLoader 的意义,它相当于类的命名空间,起到了类隔离的作用。位于同一个 ClassLoader 里面的类名是唯一的,不同的 ClassLoader 可以持有同名的类。ClassLoader 是类名称的容器,是类的沙箱。
在这里插入图片描述
不同的 ClassLoader 之间也会有合作,它们之间的合作是通过 parent 属性和双亲委派机制来完成的。parent 具有更高的加载优先级。除此之外,parent 还表达了一种共享关系,当多个子 ClassLoader 共享同一个 parent 时,那么这个 parent 里面包含的类可以认为是所有子 ClassLoader 共享的。这也是为什么 BootstrapClassLoader 被所有的类加载器视为祖先加载器,JVM 核心类库自然应该被共享。

Thread.contextClassLoader

如果你稍微阅读过 Thread 的源代码,你会在它的实例字段中发现有一个字段非常特别

class Thread {
  ...
  private ClassLoader contextClassLoader;

  public ClassLoader getContextClassLoader() {
    return contextClassLoader;
  }

  public void setContextClassLoader(ClassLoader cl) {
    this.contextClassLoader = cl;
  }
  ...
}

contextClassLoader「线程上下文类加载器」,这究竟是什么东西?

首先 contextClassLoader 是那种需要显示使用的类加载器,如果你没有显示使用它,也就永远不会在任何地方用到它。你可以使用下面这种方式来显示使用它。

Thread.currentThread().getContextClassLoader().loadClass(name);

这意味着如果你使用 forName(string name) 方法加载目标类,它不会自动使用 contextClassLoader。那些因为代码上的依赖关系而懒惰加载的类也不会自动使用 contextClassLoader来加载。

其次线程的 contextClassLoader 默认是从父线程那里继承过来的,所谓父线程就是创建了当前线程的线程。程序启动时的 main 线程的 contextClassLoader 就是 AppClassLoader。这意味着如果没有人工去设置,那么所有的线程的 contextClassLoader 都是 AppClassLoader。

那这个 contextClassLoader 究竟是做什么用的?我们要使用前面提到了类加载器分工与合作的原理来解释它的用途。

它可以做到跨线程共享类,只要它们共享同一个 contextClassLoader。父子线程之间会自动传递 contextClassLoader,所以共享起来将是自动化的。

如果不同的线程使用不同的 contextClassLoader,那么不同的线程使用的类就可以隔离开来。

如果我们对业务进行划分,不同的业务使用不同的线程池,线程池内部共享同一个 contextClassLoader,线程池之间使用不同的 contextClassLoader,就可以很好的起到隔离保护的作用,避免类版本冲突。

如果我们不去定制 contextClassLoader,那么所有的线程将会默认使用 AppClassLoader,所有的类都将会是共享的。

线程的 contextClassLoader 使用场合比较罕见,如果上面的逻辑晦涩难懂也不必过于计较。

JDK9 增加了模块功能之后对类加载器的结构设计做了一定程度的修改,不过类加载器的原理还是类似的,作为类的容器,它起到类隔离的作用,同时还需要依靠双亲委派机制来建立不同的类加载器之间的合作关系。

猜你喜欢

转载自blog.csdn.net/hxyascx/article/details/86737085