Python基础学习之四多线程

1.线程的基本概念

1.1 线程

线程是应用程序最小的执行单元,线程与进程类似,进程可以看做程序的一次执行,而线程就是这个程序的各个功能,比如打开修图软件,就是一个进程,而修图软件的滤镜、虚化等功能可以看做线程。一个进程内部可以有一个到多个线程。所有的线程运行在一个进程中,共享一个内部环境,所以线程时间可以共享数据。


2.threading

Python提供多线程编程的模块有threadthreadingthread模块提供了基本的线程和锁的支持,而threading模块提供了更高级别,功能更强的线程管理的功能。不建议使用低级别的thread模块,更高级别的threading更为先进,对线程的支持更为完善。而且thread对于你的进程什么时候应该结束完全没有控制,当主线程结束时,所有的线程都会被强制结束掉,没有警告也不会有正常的清除工作。

2.1 threading模块中的函数和类

函数有下:

  • active_count():返回当前运行的线程对象的数目
  • current_thread():返回当前Thread对象,对应的调用者的线程控制
  • enumerate():返回当前运行的线程对象的列表
  • main_thread():返回主要线程,一般情况下,主要线程是从Python解释器开始的线程

类:

  • Thread:表示运行在单独线程控制中的一个活动,一个线程的执行对象。
  • Lock:锁原语对象,实现原始锁对象的类。一旦线程已经获得锁定,则随后尝试获取锁定,直到它被释放; 任何线程都可能会释放它。
  • RLock 可重入锁是同步原语,可以由同一个线程多次获取。一旦线程获得了可重入锁,同一个线程可能会再次获取锁定; 每次线程必须释放它一次。
  • Condition: 该类实现条件变量对象。条件变量允许一个或多个线程等待,直到被另一个线程通知。
  • Event 这是线程之间通信的最简单的机制之一,一个线程发出一个事件,其他线程等待它
  • Semaphore:一个信号量管理一个内部计数器,它由每个acquire()调用递减,并由每个调用递增release()。计数器永远不会低于零;当acquire() 发现它为零时,它阻塞,等待直到其他一些线程调用 release()。
  • Timer:这个类表示一个动作,只有经过一定的时间后才能运行。

2.2 threading.Thread

Thread(group=None, target=None, name=None, args=(), kwargs={}, *, daemon=None)

group:应为None
target:run()方法调用的可调用对象,可以传入函数等可调用对象
name:线程名
args:传入到target的参数元组
kwargs:传入都target的参数字典

使用Thread两种方法,一种是创建Thread实例,调用start()方法;另一种是继承Thread类,在子类中重写run()和init()方法。

import time

import threading


def hello_thread(name):

    print('Starting {}--->{}, Time: {}'.format(threading.current_thread().name, name, time.ctime()))

    time.sleep(3)

    print('End {}--->{}, Time: {}'.format(threading.current_thread().name, name, time.ctime()))


          

if __name__ == '__main__':

    print('Satring {}, Time: {}'.format(threading.current_thread().name, time.ctime()))

    nums = ['One', 'Two', 'Three', 'Four', 'Five']

    threads = []

    for n in nums:

        t = threading.Thread(target=hello_thread, args=(n,))

        threads.append(t)

    for th in threads:

        th.start()

    

    for th in threads:

        th.join()

    print('End {}, Time: {}'.format(threading.current_thread().name, time.ctime()))

    

        

Satring MainThread, Time: Sun Sep  3 11:50:30 2017

Starting Thread-4--->One, Time: Sun Sep  3 11:50:30 2017

Starting Thread-5--->Two, Time: Sun Sep  3 11:50:30 2017Starting Thread-6--->Three, Time: Sun Sep  3 11:50:30 2017

Starting Thread-7--->Four, Time: Sun Sep  3 11:50:30 2017

Starting Thread-8--->Five, Time: Sun Sep  3 11:50:30 2017


End Thread-8--->Five, Time: Sun Sep  3 11:50:33 2017End Thread-6--->Three, Time: Sun Sep  3 11:50:33 2017


End Thread-7--->Four, Time: Sun Sep  3 11:50:33 2017End Thread-4--->One, Time: Sun Sep  3 11:50:33 2017End Thread-5--->Two, Time: Sun Sep  3 11:50:33 2017End MainThread, Time: Sun Sep  3 11:50:33 2017

输出结果混在了一起,因为标准输出是共享资源,造成混乱,所以需要加锁。

import time

import threading


th_lock = threading.Lock()


def hello_thread(name):

    # 获取锁

    th_lock.acquire()

    print('Starting {}--->{}, Time: {}'.format(threading.current_thread().name, name, time.ctime()))

    time.sleep(3)

    print('End {}--->{}, Time: {}'.format(threading.current_thread().name, name, time.ctime()))

    # 释放锁

    th_lock.release()


          

if __name__ == '__main__':

    print('Satring {}, Time: {}'.format(threading.current_thread().name, time.ctime()))

    nums = ['One', 'Two', 'Three', 'Four', 'Five']

    threads = []

    for n in nums:

        t = threading.Thread(target=hello_thread, args=(n,))

        threads.append(t)

    for th in threads:

        th.start()

    

    for th in threads:

        th.join()

    print('End {}, Time: {}'.format(threading.current_thread().name, time.ctime()))

Satring MainThread, Time: Sun Sep  3 15:24:45 2017Starting Thread-4--->One, Time: Sun Sep  3 15:24:45 2017


End Thread-4--->One, Time: Sun Sep  3 15:24:48 2017Starting Thread-5--->Two, Time: Sun Sep  3 15:24:48 2017


End Thread-5--->Two, Time: Sun Sep  3 15:24:51 2017

Starting Thread-6--->Three, Time: Sun Sep  3 15:24:51 2017

End Thread-6--->Three, Time: Sun Sep  3 15:24:54 2017

Starting Thread-7--->Four, Time: Sun Sep  3 15:24:54 2017

End Thread-7--->Four, Time: Sun Sep  3 15:24:57 2017

Starting Thread-8--->Five, Time: Sun Sep  3 15:24:57 2017

End Thread-8--->Five, Time: Sun Sep  3 15:25:00 2017End MainThread, Time: Sun Sep  3 15:25:00 2017

一个线程结束后,马上开始新的线程。

继承Thread.Threading

import threading

from time import time, sleep


class MyThreading(threading.Thread):

    def __init__(self, thread_id, thread_name):

        threading.Thread.__init__(self)

        self.thread_id = thread_id

        self.thread_name = thread_name

    def run(self):

        print('Thread {} , Name {}, Start'.format(self.thread_name, self.thread_id))

        sleep(1)

        print('Thread End')

if __name__ == '__main__':

    print('Begining')

    t1 = MyThreading(1, 'Threading-1')

    t2 = MyThreading(2, 'Threading-2')

    t1.start()

    t2.start()

    t1.join()

    t2.join()

    print('All Done!')

        

    

Begining

Thread Threading-1 , Name 1, Start

Thread Threading-2 , Name 2, Start

Thread EndThread End


All Done!

外部传入线程运行的函数

import time 

import threading


loops = ['one', 'two']


class MyThread(threading.Thread):

    def __init__(self, target, args):

        super(MyThread, self).__init__()

        self.target = target

        self.args = args

        

    def run(self):

        self.target(*self.args)

def output(nloop, nesc):

    print('Start loop, "{}", at: {}'.format(nloop, time.ctime()))

    time.sleep(nesc)

    print('End loop, "{}", at: {}'.format(nloop, time.ctime()))

    

if __name__ == '__main__':

    print('Main Threading')

    nloop = range(len(loops))

    threads = []

    for i in nloop:

        my_thread = MyThread(output, (loops[i], i))

        threads.append(my_thread)

    for th in threads:        

        th.start()

    for th in threads:

        th.join()

    print('All Done')

    

Main ThreadingStart loop, "one", at: Sun Sep  3 16:54:43 2017


End loop, "one", at: Sun Sep  3 16:54:43 2017

Start loop, "two", at: Sun Sep  3 16:54:43 2017

End loop, "two", at: Sun Sep  3 16:54:44 2017

All Done

创建线程的时候传入一个类,这样可以使用类的强大功能,可以保存更多的信息,方法更灵活。

 

from threading import Thread

from time import sleep, ctime

 

 

loops = [4, 2]

 

 

class ThreadFunc(object):

 

    def __init__(self, func, args, name=""):

        self.name = name

        self.func = func

        self.args = args

 

    def __call__(self):

        # 创建新线程的时候,Thread 对象会调用我们的 ThreadFunc 对象,这时会用到一个特殊函数 __call__()。

        self.func(*self.args)

 

 

def loop(nloop, nsec):

    print('start loop %s at: %s' % (nloop, ctime()))

    sleep(nsec)

    print('loop %s done at: %s' % (nloop, ctime()))

 

 

def main():

    print('starting at:', ctime())

    threads = []

    nloops = range(len(loops))

 

    for i in nloops:

        t = Thread(target=ThreadFunc(loop, (i, loops[i]), loop.__name__))

        threads.append(t)

 

    for i in nloops:

        threads[i].start()

 

    for i in nloops:

        threads[i].join() 

    print('all DONE at:', ctime())

 

 

if __name__ == '__main__':

    main()

starting at: Sun Sep  3 17:33:51 2017

start loop 0 at: Sun Sep  3 17:33:51 2017

start loop 1 at: Sun Sep  3 17:33:51 2017

loop 1 done at: Sun Sep  3 17:33:53 2017

loop 0 done at: Sun Sep  3 17:33:55 2017all DONE at:

 Sun Sep  3 17:33:55 2017

总结:threading.Thread()类创建线程,实际上就像老师给学生分配任务一样,你做什么,他做什么,她做什么,我做什么。在Python中分配的任务以函数或者类的形式体现,所以创建多线程会给threading.Thread指定一个函数或者类,相当与指定任务,传入参数则相当与老师给你一些材料,用这些材料完成任务。因此,可以看到创建多线程时指定函数、指定类,有的还会继承threading.Thread,添加一些功能,再指定函数或者类。
  start()方法用来启动线程,start()告诉run()函数运行线程,所以继承threading.Thread时需要重写run()方法。join()方法用以阻塞当前线程,就是告诉当前线程,调用join()方法的线程不执行完,你就不能执行。

2.3 Lock

线程共享数据,因此多个线程对同一数据修改可能会发生冲突,因此需要Lock。当一个线程获取Lock时,相当于告诉其他线程,数据我正在修改,你不能动,等我释放之后,你才可以。

import time, threading


balance = 0


def change_it(n):

    global balance

    balance = balance + n

    balance = balance - n


def run_thread(n):

    for i in range(100000):

        change_it(n)


t1 = threading.Thread(target=run_thread, args=(5,))

t2 = threading.Thread(target=run_thread, args=(8,))

t1.start()

t2.start()

t1.join()

t2.join()

print(balance)

5

多次执行后,会出现不为0的情况,因为修改balance需要多条语句,而执行这几条语句时,线程可能中断,从而导致多个线程把同一个对象的内容改乱了。

import time, threading


balance = 0

lock = threading.Lock()

def change_it(n):

    global balance

    balance = balance + n

    balance = balance - n


def run_thread(n):

    for i in range(100000):

        try:

            # 获取锁

            lock.acquire()

            change_it(n)

        finally:

            # 释放锁

            lock.release()


t1 = threading.Thread(target=run_thread, args=(5,))

t2 = threading.Thread(target=run_thread, args=(8,))

t1.start()

t2.start()

t1.join()

t2.join()

print(balance)

0

2.4 Condition

条件变量对象能让一个线程停下来,等待其他线程满足了某个条件。条件变量允许一个或多个线程等待,直到被另一个线程通知。线程首先acquire一个条件变量锁。如果条件不足,则该线程wait,如果满足就执行线程,甚至可以notify其他线程。其他处于wait状态的线程接到通知后会重新判断条件。

  1. 1. 当一个线程获取锁后,发现没有相应的资源或状态,就会调用wait阻塞,释放已经获得的锁,直到期望的资源或者状态发生改变。
  2. 2. 当一个线程获得了锁,改变了资源或者状态,就会调用notify()或者notifyall()去通知其他线程。

方法:

acquire():获得锁
release
():释放锁
wait
([timeout]):持续等待直到被notify()或者notifyAll()通知或者超时(必须先获得锁)
wait
():所做操作, 先释放获得的锁, 然后阻塞, 知道被notify或者notifyAll唤醒或者超时, 一旦被唤醒或者超时, 会重新获取锁(应该说抢锁), 然后返回
notify
():唤醒一个wait()阻塞的线程
notify_all
()或者notifyAll():唤醒所有阻塞的线程

from threading import Thread, current_thread, Condition

from time import sleep

con = Condition()


def th_con():

    with con:

        for i in range(5):

            print('Name: {}, Times: {}'.format(current_thread().name, i))

            sleep(0.3)

            if i == 3:

                print('Release Lock, Wait')

                # 只有获取锁的线程才能调用 wait() notify(),因此必须在锁释放前调用 

                con.wait()

                

def th_con2():

    with con:

        for i in range(5):

            print('Name: {}, Times: {}'.format(current_thread().name, i))

            sleep(0.3)

            if i == 3:                

                con.notify()

                print('Notify Thread')

                

if __name__ == '__main__':

    Thread(target=th_con, name='Thread>>>One').start()

    Thread(target=th_con2, name='Thread<<<Two').start()

Name: Thread>>>One, Times: 0

Name: Thread>>>One, Times: 1

Name: Thread>>>One, Times: 2

Name: Thread>>>One, Times: 3

Release Lock, Wait

Name: Thread<<<Two, Times: 0

Name: Thread<<<Two, Times: 1

Name: Thread<<<Two, Times: 2

Name: Thread<<<Two, Times: 3

Notify Thread

Name: Thread<<<Two, Times: 4

Name: Thread>>>One, Times: 4

2.5 Event

事件用于在线程间通信。一个线程发出一个信号,其他一个或多个线程等待,调用event对象的wait方法,线程则会阻塞等待,直到别的线程set之后,才会被唤醒。

import time

import threading


class MyThread(threading.Thread):

    def __init__(self, event):

        super(MyThread, self).__init__()

        self.event = event

        

    def run(self):

        print('Thread {} is ready'.format(self.getName()))

        self.event.wait()

        print('Thread {} run'.format(self.getName()))

        

signal = threading.Event()


def main():

    start = time.time()

    for i in range(3):

        t = MyThread(signal)

        t.start()

        

    time.sleep(3)

    print('After {}s'.format(time.time() - start))

    # 将内部标志设置为True,等待标识的其他线程都会被唤醒

    signal.set()

if __name__ == '__main__':

    main()

Thread Thread-4 is ready

Thread Thread-5 is ready

Thread Thread-6 is ready

After 3.0065603256225586sThread Thread-4 run


Thread Thread-6 run

Thread Thread-5 run

3.queue

queue用于线程间通信,让各个线程之间共享数据。Queue实现的三种队列模型:

  • FIFO(先进先出)队列,第一加入队列的任务, 被第一个取出
  • LIFO(后进先出)队列,最后加入队列的任务, 被第一个取出
  • PriorityQueue(优先级)队列, 保持队列数据有序, 最小值被先取出

queue实现的类和异常:

qsize():返回队列的大致大小
empty
():如果队列为空,则返回True
full
():如果队列满,则返回True
put
():Queue加入元素
get
():Queue中删除并返回一个项目
join
():阻塞一直到Queue中的所有元素被获取和处理
task_done
():表明以前入队的任务已经完成。由队列消费者线程使用。对于每个get()用于获取任务的后续调用, task_done()告知队列对任务的处理完成。

生产者和消费者模型

某些模块负责生产数据,这些数据由其他模块来负责处理(此处的模块可能是:函数、线程、进程等)。产生数据的模块称为生产者,而处理数据的模块称为消费者。在生产者与消费者之间的缓冲区称之为仓库。生产者负责往仓库运输商品,而消费者负责从仓库里取出商品,这就构成了生产者消费者模式。


import time

import threading

import queue

import random




class Producer(threading.Thread):

    def __init__(self, name, q):

        threading.Thread.__init__(self, name=name)

        self.data = q

    def run(self):

        for i in range(10):

            elem = random.randrange(100)

            self.data.put(elem)

            print('{} a elem {}, Now the size is {}'.format(self.getName(), elem, self.data.qsize()))

            time.sleep(random.random())

        print('Thread {}, {} is finished!!!'.format(threading.current_thread().name, self.getName()))

class Consumer(threading.Thread):

    def __init__(self, name, q):

        threading.Thread.__init__(self, name=name)

        self.data = q

    def run(self):

        for i in range(10):

            elem = self.data.get()

            self.data.task_done()

            print('{} a elem {}, Now the size is {}'.format(self.getName(), elem, self.data.qsize()))

            time.sleep(random.random())

        print('Thread {}, {} is finished!!!'.format(threading.current_thread().name, self.getName()))


def main():

    print('Start Pro')

    q = queue.Queue()

    producer = Producer('Producer', q)

    consumer = Consumer('Consumer', q)

    producer.start()

    consumer.start()

    producer.join()

    consumer.join()

    

#     threads_pro = []

#     threads_con = []

#     for i in range(3):

#         producer = Producer('Producer', q)

#         threads_pro.append(producer)

#     for i in range(3):

#         consumer = Consumer('Consumer', q)

#         threads_con.append(consumer)

#     for th in threads_pro:

#         th.start()

#     for th in threads_con:

#         th.start()

#     for th in threads_pro:

#         th.join()

#     for th in threads_con:

#         th.join()

    print('All Done!!!')

    

            

if __name__ == '__main__':

    main()

Start Pro

Producer a elem 89, Now the size is 1

Consumer a elem 89, Now the size is 0

Producer a elem 26, Now the size is 1Consumer a elem 26, Now the size is 0


Producer a elem 51, Now the size is 1Consumer a elem 51, Now the size is 0


Producer a elem 41, Now the size is 1Consumer a elem 41, Now the size is 0


Producer a elem 29, Now the size is 1Consumer a elem 29, Now the size is 0


Producer a elem 63, Now the size is 1

Consumer a elem 63, Now the size is 0

Producer a elem 56, Now the size is 1Consumer a elem 56, Now the size is 0


Producer a elem 31, Now the size is 1

Consumer a elem 31, Now the size is 0

Producer a elem 21, Now the size is 1

Consumer a elem 21, Now the size is 0

Producer a elem 67, Now the size is 1

Consumer a elem 67, Now the size is 0

Thread Producer, Producer is finished!!!

Thread Consumer, Consumer is finished!!!

All Done!!!

4.ThreadLocal

一个ThreadLocal变量虽然是全局变量,但每个线程都只能读写自己线程的独立副本,互不干扰。ThreadLocal解决了参数在一个线程中各个函数之间互相传递的问题。它本身是一个全局变量,但是每个线程却可以利用它来保存属于自己的私有数据,这些私有数据对其他线程也是不可见的。



import threading


# 创建全局ThreadLocal对象:

local_school = threading.local()


def process_student():

    # 获取当前线程关联的student:

    std = local_school.student

    print('Hello, %s (in %s)' % (std, threading.current_thread().name))


def process_thread(name):

    # 绑定ThreadLocalstudent:

    local_school.student = name

    process_student()


t1 = threading.Thread(target= process_thread, args=('Alice',), name='Thread-A')

t2 = threading.Thread(target= process_thread, args=('Bob',), name='Thread-B')

t1.start()

t2.start()

t1.join()

t2.join()

Hello, Alice (in Thread-A)

Hello, Bob (in Thread-B)




猜你喜欢

转载自blog.csdn.net/Jack_Chen3/article/details/80939692