第十二章 计算学习理论

12.1 基础知识

泛化误差 经验误差



12.2 PAC学习(PAC:概率近似正确)

概念c  概念类C

假设空间H,若目标概念c属于H,则H中存在假设能将所有示例按与真实标记一致的方向完全分开,称该问题对算法A是可分的;若c不属于H,则H中不存在能将所有示例完全正确划分开的假设,称该问题对学习算法A是不可分的。

这里写图片描述 

这里写图片描述 
这里写图片描述 
这里写图片描述

12.3 有限假设空间
12.3.1 可分情况

这里写图片描述

通过上式可以得知:对于可分情形的有限假设空间,目标概念都是PAC可学习的,即当样本数量满足上述条件之后,在与训练集一致的假设中总是可以在1-σ概率下找到目标概念的有效近似。


12.3.2 不可分情况
即目标概念c不存在于假设空间。当假设空间给定时,必然存一个假设的泛化误差最小,若能找出此假设的有效近似也不失为一个好的目标,这便是不可知学习(agnostic learning)的来源。
这里写图片描述

这时候便要用到Hoeffding不等式:

这里写图片描述

对于假设空间中的所有假设,出现泛化误差与经验误差之差大于e的概率和为:

这里写图片描述

因此,可令不等式的右边小于(等于)σ,便可以求出满足泛化误差与经验误差相差小于e所需的最少样本数,同时也可以求出泛化误差界。

这里写图片描述

12.4 VC维
现实中经常面临的是无限假设空间,这里需要考虑假设空间的VC维。
先了解增长函数、对分、打散的概念。

增长函数:对于给定数据集D,假设空间中的每个假设都能对数据集的样本赋予标记,因此一个假设对应着一种打标结果,不同假设对D的打标结果可能是相同的,也可能是不同的。随着样本数量m的增大,假设空间对样本集D的打标结果也会增多,增长函数则表示假设空间对m个样本的数据集D打标的最大可能结果数,因此增长函数描述了假设空间的表示能力与复杂度。 
这里写图片描述

打散:例如对二分类问题来说,m个样本最多有2^m个可能结果,每种可能结果称为一种“对分”,若假设空间能实现数据集D的所有对分,则称数据集能被该假设空间打散。

因此尽管假设空间是无限的,但它对特定数据集打标的不同结果数是有限的,假设空间的VC维正是它能打散的最大数据集大小。通常这样来计算假设空间的VC维:若存在大小为d的数据集能被假设空间打散,但不存在任何大小为d+1的数据集能被假设空间打散,则其VC维为d。

这里写图片描述

同时书中给出了假设空间VC维与增长函数的两个关系:

这里写图片描述

直观来理解(1)式也十分容易: 首先假设空间的VC维是d,说明当m<=d时,增长函数与2^m相等,例如:当m=d时,右边的组合数求和刚好等于2^d;而当m=d+1时,右边等于2^(d+1)-1,十分符合VC维的定义,同时也可以使用数学归纳法证明;(2)式则是由(1)式直接推导得出。

在有限假设空间中,根据Hoeffding不等式便可以推导得出学习算法的泛化误差界;但在无限假设空间中,由于假设空间的大小无法计算,只能通过增长函数来描述其复杂度,因此无限假设空间中的泛化误差界需要引入增长函数。 
这里写图片描述 
这里写图片描述

上式给出了基于VC维的泛化误差界,同时也可以计算出满足条件需要的样本数(样本复杂度)。若学习算法满足经验风险最小化原则(ERM),即学习算法的输出假设h在数据集D上的经验误差最小,可证明:任何VC维有限的假设空间都是(不可知)PAC可学习的,换而言之:若假设空间的最小泛化误差为0即目标概念包含在假设空间中,则是PAC可学习,若最小泛化误差不为0,则称为不可知PAC可学习。

13.4 稳定性

稳定性考察的是当算法的输入发生变化时,输出是否会随之发生较大的变化,输入的数据集D有以下两种变化:

这里写图片描述

若对数据集中的任何样本z,满足:

这里写图片描述

即原学习器和剔除一个样本后生成的学习器对z的损失之差保持β稳定,称学习器关于损失函数满足β-均匀稳定性。同时若损失函数有上界,即原学习器对任何样本的损失函数不超过M,则有如下定理:

这里写图片描述

事实上,若学习算法符合经验风险最小化原则(ERM)且满足β-均匀稳定性,则假设空间是可学习的。稳定性通过损失函数与假设空间的可学习联系在了一起,区别在于:假设空间关注的是经验误差与泛化误差,需要考虑到所有可能的假设;而稳定性只关注当前的输出假设。




猜你喜欢

转载自blog.csdn.net/steph_curry/article/details/79189572