OpenGL之——光照模型(一)

版权声明:转载请注明出处 https://blog.csdn.net/qq_35294564/article/details/86317355

main.cpp

#include <iostream>

// GLEW
#define GLEW_STATIC
#include <GL/glew.h>

// GLFW
#include <GLFW/glfw3.h>
// Other Libs
#include <SOIL.h>
#include <GL/glut.h>
// GLM Mathematics
#include <glm/glm.hpp>
#include <glm/gtc/matrix_transform.hpp>
#include <glm/gtc/type_ptr.hpp>

#pragma comment(lib,"glew32s.lib")
#pragma comment(lib,"glfw3.lib")
#pragma comment(lib,"SOIL.lib")
// Other includes
#include "Shader.h"
#include "Camera.h"


// Function prototypes
void key_callback(GLFWwindow* window, int key, int scancode, int action, int mode);
void mouse_callback(GLFWwindow* window, double xpos, double ypos);
void scroll_callback(GLFWwindow* window, double xoffset, double yoffset);
void do_movement();

// Window dimensions
const GLuint WIDTH = 800, HEIGHT = 600;

// Camera
Camera  camera(glm::vec3(0.0f, 0.0f, 3.0f));
GLfloat lastX = WIDTH / 2.0;
GLfloat lastY = HEIGHT / 2.0;
bool    keys[1024];

// Light attributes
glm::vec3 lightPos(1.2f, 1.0f, 2.0f);

// Deltatime
GLfloat deltaTime = 0.0f;	// Time between current frame and last frame
GLfloat lastFrame = 0.0f;  	// Time of last frame

// The MAIN function, from here we start the application and run the game loop
int main()
{
	// Init GLFW
	glfwInit();
	// Set all the required options for GLFW
	glfwWindowHint(GLFW_CONTEXT_VERSION_MAJOR, 3);
	glfwWindowHint(GLFW_CONTEXT_VERSION_MINOR, 3);
	glfwWindowHint(GLFW_OPENGL_PROFILE, GLFW_OPENGL_CORE_PROFILE);
	glfwWindowHint(GLFW_RESIZABLE, GL_FALSE);

	// Create a GLFWwindow object that we can use for GLFW's functions
	GLFWwindow* window = glfwCreateWindow(WIDTH, HEIGHT, "LearnOpenGL", nullptr, nullptr);
	glfwMakeContextCurrent(window);

	// Set the required callback functions
	glfwSetKeyCallback(window, key_callback);
	glfwSetCursorPosCallback(window, mouse_callback);
	glfwSetScrollCallback(window, scroll_callback);

	// GLFW Options
	glfwSetInputMode(window, GLFW_CURSOR, GLFW_CURSOR_DISABLED);

	// Set this to true so GLEW knows to use a modern approach to retrieving function pointers and extensions
	glewExperimental = GL_TRUE;
	// Initialize GLEW to setup the OpenGL Function pointers
	glewInit();

	// Define the viewport dimensions
	glViewport(0, 0, WIDTH, HEIGHT);

	// OpenGL options
	glEnable(GL_DEPTH_TEST);


	// Build and compile our shader program
	Shader lightingShader("lighting.vs", "lighting.frag");
	Shader lampShader("lamp.vs", "lamp.frag");

	// Set up vertex data (and buffer(s)) and attribute pointers
	GLfloat vertices[] = {
		-0.5f, -0.5f, -0.5f,  0.0f,  0.0f, -1.0f,
		 0.5f, -0.5f, -0.5f,  0.0f,  0.0f, -1.0f,
		 0.5f,  0.5f, -0.5f,  0.0f,  0.0f, -1.0f,
		 0.5f,  0.5f, -0.5f,  0.0f,  0.0f, -1.0f,
		-0.5f,  0.5f, -0.5f,  0.0f,  0.0f, -1.0f,
		-0.5f, -0.5f, -0.5f,  0.0f,  0.0f, -1.0f,

		-0.5f, -0.5f,  0.5f,  0.0f,  0.0f,  1.0f,
		 0.5f, -0.5f,  0.5f,  0.0f,  0.0f,  1.0f,
		 0.5f,  0.5f,  0.5f,  0.0f,  0.0f,  1.0f,
		 0.5f,  0.5f,  0.5f,  0.0f,  0.0f,  1.0f,
		-0.5f,  0.5f,  0.5f,  0.0f,  0.0f,  1.0f,
		-0.5f, -0.5f,  0.5f,  0.0f,  0.0f,  1.0f,

		-0.5f,  0.5f,  0.5f, -1.0f,  0.0f,  0.0f,
		-0.5f,  0.5f, -0.5f, -1.0f,  0.0f,  0.0f,
		-0.5f, -0.5f, -0.5f, -1.0f,  0.0f,  0.0f,
		-0.5f, -0.5f, -0.5f, -1.0f,  0.0f,  0.0f,
		-0.5f, -0.5f,  0.5f, -1.0f,  0.0f,  0.0f,
		-0.5f,  0.5f,  0.5f, -1.0f,  0.0f,  0.0f,

		 0.5f,  0.5f,  0.5f,  1.0f,  0.0f,  0.0f,
		 0.5f,  0.5f, -0.5f,  1.0f,  0.0f,  0.0f,
		 0.5f, -0.5f, -0.5f,  1.0f,  0.0f,  0.0f,
		 0.5f, -0.5f, -0.5f,  1.0f,  0.0f,  0.0f,
		 0.5f, -0.5f,  0.5f,  1.0f,  0.0f,  0.0f,
		 0.5f,  0.5f,  0.5f,  1.0f,  0.0f,  0.0f,

		-0.5f, -0.5f, -0.5f,  0.0f, -1.0f,  0.0f,
		 0.5f, -0.5f, -0.5f,  0.0f, -1.0f,  0.0f,
		 0.5f, -0.5f,  0.5f,  0.0f, -1.0f,  0.0f,
		 0.5f, -0.5f,  0.5f,  0.0f, -1.0f,  0.0f,
		-0.5f, -0.5f,  0.5f,  0.0f, -1.0f,  0.0f,
		-0.5f, -0.5f, -0.5f,  0.0f, -1.0f,  0.0f,

		-0.5f,  0.5f, -0.5f,  0.0f,  1.0f,  0.0f,
		 0.5f,  0.5f, -0.5f,  0.0f,  1.0f,  0.0f,
		 0.5f,  0.5f,  0.5f,  0.0f,  1.0f,  0.0f,
		 0.5f,  0.5f,  0.5f,  0.0f,  1.0f,  0.0f,
		-0.5f,  0.5f,  0.5f,  0.0f,  1.0f,  0.0f,
		-0.5f,  0.5f, -0.5f,  0.0f,  1.0f,  0.0f
	};
	// First, set the container's VAO (and VBO)
	GLuint VBO, containerVAO;
	glGenVertexArrays(1, &containerVAO);
	glGenBuffers(1, &VBO);

	glBindBuffer(GL_ARRAY_BUFFER, VBO);
	glBufferData(GL_ARRAY_BUFFER, sizeof(vertices), vertices, GL_STATIC_DRAW);

	glBindVertexArray(containerVAO);
	// Position attribute
	glVertexAttribPointer(0, 3, GL_FLOAT, GL_FALSE, 6 * sizeof(GLfloat), (GLvoid*)0);
	glEnableVertexAttribArray(0);
	// Normal attribute
	glVertexAttribPointer(1, 3, GL_FLOAT, GL_FALSE, 6 * sizeof(GLfloat), (GLvoid*)(3 * sizeof(GLfloat)));
	glEnableVertexAttribArray(1);
	glBindVertexArray(0);

	// Then, we set the light's VAO (VBO stays the same. After all, the vertices are the same for the light object (also a 3D cube))
	GLuint lightVAO;
	glGenVertexArrays(1, &lightVAO);
	glBindVertexArray(lightVAO);
	// We only need to bind to the VBO (to link it with glVertexAttribPointer), no need to fill it; the VBO's data already contains all we need.
	glBindBuffer(GL_ARRAY_BUFFER, VBO);
	// Set the vertex attributes (only position data for the lamp))
	glVertexAttribPointer(0, 3, GL_FLOAT, GL_FALSE, 6 * sizeof(GLfloat), (GLvoid*)0); // Note that we skip over the normal vectors
	glEnableVertexAttribArray(0);
	glBindVertexArray(0);


	// Game loop
	while (!glfwWindowShouldClose(window))
	{
		// Calculate deltatime of current frame
		GLfloat currentFrame = glfwGetTime();
		deltaTime = currentFrame - lastFrame;
		lastFrame = currentFrame;

		// Check if any events have been activiated (key pressed, mouse moved etc.) and call corresponding response functions
		glfwPollEvents();
		do_movement();

		// Clear the colorbuffer
		glClearColor(0.1f, 0.1f, 0.1f, 1.0f);
		glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);

		// Use cooresponding shader when setting uniforms/drawing objects
		lightingShader.Use();
		GLint objectColorLoc = glGetUniformLocation(lightingShader.Program, "objectColor");
		GLint lightColorLoc = glGetUniformLocation(lightingShader.Program, "lightColor");
		GLint lightPosLoc = glGetUniformLocation(lightingShader.Program, "lightPos");
		GLint viewPosLoc = glGetUniformLocation(lightingShader.Program, "viewPos");
		glUniform3f(objectColorLoc, 1.0f, 0.5f, 0.31f);
		glUniform3f(lightColorLoc, 1.0f, 1.0f, 1.0f);
		glUniform3f(lightPosLoc, lightPos.x, lightPos.y, lightPos.z);
		glUniform3f(viewPosLoc, camera.Position.x, camera.Position.y, camera.Position.z);



		// Create camera transformations
		glm::mat4 view;
		view = camera.GetViewMatrix();
		glm::mat4 projection = glm::perspective(camera.Zoom, (GLfloat)WIDTH / (GLfloat)HEIGHT, 0.1f, 100.0f);
		// Get the uniform locations
		GLint modelLoc = glGetUniformLocation(lightingShader.Program, "model");
		GLint viewLoc = glGetUniformLocation(lightingShader.Program, "view");
		GLint projLoc = glGetUniformLocation(lightingShader.Program, "projection");
		// Pass the matrices to the shader
		glUniformMatrix4fv(viewLoc, 1, GL_FALSE, glm::value_ptr(view));
		glUniformMatrix4fv(projLoc, 1, GL_FALSE, glm::value_ptr(projection));

		// Draw the container (using container's vertex attributes)
		glBindVertexArray(containerVAO);
		glm::mat4 model;
		glUniformMatrix4fv(modelLoc, 1, GL_FALSE, glm::value_ptr(model));
		glDrawArrays(GL_TRIANGLES, 0, 36);
		glBindVertexArray(0);

		// Also draw the lamp object, again binding the appropriate shader
		lampShader.Use();
		// Get location objects for the matrices on the lamp shader (these could be different on a different shader)
		modelLoc = glGetUniformLocation(lampShader.Program, "model");
		viewLoc = glGetUniformLocation(lampShader.Program, "view");
		projLoc = glGetUniformLocation(lampShader.Program, "projection");
		// Set matrices
		glUniformMatrix4fv(viewLoc, 1, GL_FALSE, glm::value_ptr(view));
		glUniformMatrix4fv(projLoc, 1, GL_FALSE, glm::value_ptr(projection));
		model = glm::mat4();
		model = glm::translate(model, lightPos);
		model = glm::scale(model, glm::vec3(0.2f)); // Make it a smaller cube
		glUniformMatrix4fv(modelLoc, 1, GL_FALSE, glm::value_ptr(model));
		// Draw the light object (using light's vertex attributes)
		glBindVertexArray(lightVAO);
		glDrawArrays(GL_TRIANGLES, 0, 36);
		glBindVertexArray(0);

		// Swap the screen buffers
		glfwSwapBuffers(window);
	}

	// Terminate GLFW, clearing any resources allocated by GLFW.
	glfwTerminate();
	return 0;
}

// Is called whenever a key is pressed/released via GLFW
void key_callback(GLFWwindow* window, int key, int scancode, int action, int mode)
{
	if (key == GLFW_KEY_ESCAPE && action == GLFW_PRESS)
		glfwSetWindowShouldClose(window, GL_TRUE);
	if (key >= 0 && key < 1024)
	{
		if (action == GLFW_PRESS)
			keys[key] = true;
		else if (action == GLFW_RELEASE)
			keys[key] = false;
	}
}

void do_movement()
{
	// Camera controls
	if (keys[GLFW_KEY_W])
		camera.ProcessKeyboard(FORWARD, deltaTime);
	if (keys[GLFW_KEY_S])
		camera.ProcessKeyboard(BACKWARD, deltaTime);
	if (keys[GLFW_KEY_A])
		camera.ProcessKeyboard(LEFT, deltaTime);
	if (keys[GLFW_KEY_D])
		camera.ProcessKeyboard(RIGHT, deltaTime);
}

bool firstMouse = true;
void mouse_callback(GLFWwindow* window, double xpos, double ypos)
{
	if (firstMouse)
	{
		lastX = xpos;
		lastY = ypos;
		firstMouse = false;
	}

	GLfloat xoffset = xpos - lastX;
	GLfloat yoffset = lastY - ypos;  // Reversed since y-coordinates go from bottom to left

	lastX = xpos;
	lastY = ypos;

	camera.ProcessMouseMovement(xoffset, yoffset);
}

void scroll_callback(GLFWwindow* window, double xoffset, double yoffset)
{
	camera.ProcessMouseScroll(yoffset);
}

Camera.h

#pragma once

// Std. Includes
#include <vector>

// GL Includes
#include <GL/glew.h>
#include <glm/glm.hpp>
#include <glm/gtc/matrix_transform.hpp>



// Defines several possible options for camera movement. Used as abstraction to stay away from window-system specific input methods
enum Camera_Movement {
	FORWARD,
	BACKWARD,
	LEFT,
	RIGHT
};

// Default camera values
const GLfloat YAW = -90.0f;
const GLfloat PITCH = 0.0f;
const GLfloat SPEED = 3.0f;
const GLfloat SENSITIVTY = 0.25f;
const GLfloat ZOOM = 45.0f;


// An abstract camera class that processes input and calculates the corresponding Eular Angles, Vectors and Matrices for use in OpenGL
class Camera
{
public:
	// Camera Attributes
	glm::vec3 Position;
	glm::vec3 Front;
	glm::vec3 Up;
	glm::vec3 Right;
	glm::vec3 WorldUp;
	// Eular Angles
	GLfloat Yaw;
	GLfloat Pitch;
	// Camera options
	GLfloat MovementSpeed;
	GLfloat MouseSensitivity;
	GLfloat Zoom;

	// Constructor with vectors
	Camera(glm::vec3 position = glm::vec3(0.0f, 0.0f, 0.0f), glm::vec3 up = glm::vec3(0.0f, 1.0f, 0.0f), GLfloat yaw = YAW, GLfloat pitch = PITCH) : Front(glm::vec3(0.0f, 0.0f, -1.0f)), MovementSpeed(SPEED), MouseSensitivity(SENSITIVTY), Zoom(ZOOM)
	{
		this->Position = position;
		this->WorldUp = up;
		this->Yaw = yaw;
		this->Pitch = pitch;
		this->updateCameraVectors();
	}
	// Constructor with scalar values
	Camera(GLfloat posX, GLfloat posY, GLfloat posZ, GLfloat upX, GLfloat upY, GLfloat upZ, GLfloat yaw, GLfloat pitch) : Front(glm::vec3(0.0f, 0.0f, -1.0f)), MovementSpeed(SPEED), MouseSensitivity(SENSITIVTY), Zoom(ZOOM)
	{
		this->Position = glm::vec3(posX, posY, posZ);
		this->WorldUp = glm::vec3(upX, upY, upZ);
		this->Yaw = yaw;
		this->Pitch = pitch;
		this->updateCameraVectors();
	}

	// Returns the view matrix calculated using Eular Angles and the LookAt Matrix
	glm::mat4 GetViewMatrix()
	{
		return glm::lookAt(this->Position, this->Position + this->Front, this->Up);
	}

	// Processes input received from any keyboard-like input system. Accepts input parameter in the form of camera defined ENUM (to abstract it from windowing systems)
	void ProcessKeyboard(Camera_Movement direction, GLfloat deltaTime)
	{
		GLfloat velocity = this->MovementSpeed * deltaTime;
		if (direction == FORWARD)
			this->Position += this->Front * velocity;
		if (direction == BACKWARD)
			this->Position -= this->Front * velocity;
		if (direction == LEFT)
			this->Position -= this->Right * velocity;
		if (direction == RIGHT)
			this->Position += this->Right * velocity;
	}

	// Processes input received from a mouse input system. Expects the offset value in both the x and y direction.
	void ProcessMouseMovement(GLfloat xoffset, GLfloat yoffset, GLboolean constrainPitch = true)
	{
		xoffset *= this->MouseSensitivity;
		yoffset *= this->MouseSensitivity;

		this->Yaw += xoffset;
		this->Pitch += yoffset;

		// Make sure that when pitch is out of bounds, screen doesn't get flipped
		if (constrainPitch)
		{
			if (this->Pitch > 89.0f)
				this->Pitch = 89.0f;
			if (this->Pitch < -89.0f)
				this->Pitch = -89.0f;
		}

		// Update Front, Right and Up Vectors using the updated Eular angles
		this->updateCameraVectors();
	}

	// Processes input received from a mouse scroll-wheel event. Only requires input on the vertical wheel-axis
	void ProcessMouseScroll(GLfloat yoffset)
	{
		if (this->Zoom >= 1.0f && this->Zoom <= 45.0f)
			this->Zoom -= yoffset;
		if (this->Zoom <= 1.0f)
			this->Zoom = 1.0f;
		if (this->Zoom >= 45.0f)
			this->Zoom = 45.0f;
	}

private:
	// Calculates the front vector from the Camera's (updated) Eular Angles
	void updateCameraVectors()
	{
		// Calculate the new Front vector
		glm::vec3 front;
		front.x = cos(glm::radians(this->Yaw)) * cos(glm::radians(this->Pitch));
		front.y = sin(glm::radians(this->Pitch));
		front.z = sin(glm::radians(this->Yaw)) * cos(glm::radians(this->Pitch));
		this->Front = glm::normalize(front);
		// Also re-calculate the Right and Up vector
		this->Right = glm::normalize(glm::cross(this->Front, this->WorldUp));  // Normalize the vectors, because their length gets closer to 0 the more you look up or down which results in slower movement.
		this->Up = glm::normalize(glm::cross(this->Right, this->Front));
	}
};

Shader.h

#ifndef SHADER_H
#define SHADER_H

#include <string>
#include <fstream>
#include <sstream>
#include <iostream>

#include <GL/glew.h>

class Shader
{
public:
	GLuint Program;
	// Constructor generates the shader on the fly
	Shader(const GLchar* vertexPath, const GLchar* fragmentPath)
	{
		// 1. Retrieve the vertex/fragment source code from filePath
		std::string vertexCode;
		std::string fragmentCode;
		std::ifstream vShaderFile;
		std::ifstream fShaderFile;
		// ensures ifstream objects can throw exceptions:
		vShaderFile.exceptions(std::ifstream::badbit);
		fShaderFile.exceptions(std::ifstream::badbit);
		try
		{
			// Open files
			vShaderFile.open(vertexPath);
			fShaderFile.open(fragmentPath);
			std::stringstream vShaderStream, fShaderStream;
			// Read file's buffer contents into streams
			vShaderStream << vShaderFile.rdbuf();
			fShaderStream << fShaderFile.rdbuf();
			// close file handlers
			vShaderFile.close();
			fShaderFile.close();
			// Convert stream into string
			vertexCode = vShaderStream.str();
			fragmentCode = fShaderStream.str();
		}
		catch (std::ifstream::failure e)
		{
			std::cout << "ERROR::SHADER::FILE_NOT_SUCCESFULLY_READ" << std::endl;
		}
		const GLchar* vShaderCode = vertexCode.c_str();
		const GLchar * fShaderCode = fragmentCode.c_str();
		// 2. Compile shaders
		GLuint vertex, fragment;
		GLint success;
		GLchar infoLog[512];
		// Vertex Shader
		vertex = glCreateShader(GL_VERTEX_SHADER);
		glShaderSource(vertex, 1, &vShaderCode, NULL);
		glCompileShader(vertex);
		// Print compile errors if any
		glGetShaderiv(vertex, GL_COMPILE_STATUS, &success);
		if (!success)
		{
			glGetShaderInfoLog(vertex, 512, NULL, infoLog);
			std::cout << "ERROR::SHADER::VERTEX::COMPILATION_FAILED\n" << infoLog << std::endl;
		}
		// Fragment Shader
		fragment = glCreateShader(GL_FRAGMENT_SHADER);
		glShaderSource(fragment, 1, &fShaderCode, NULL);
		glCompileShader(fragment);
		// Print compile errors if any
		glGetShaderiv(fragment, GL_COMPILE_STATUS, &success);
		if (!success)
		{
			glGetShaderInfoLog(fragment, 512, NULL, infoLog);
			std::cout << "ERROR::SHADER::FRAGMENT::COMPILATION_FAILED1\n" << infoLog << std::endl;
		}
		// Shader Program
		this->Program = glCreateProgram();
		glAttachShader(this->Program, vertex);
		glAttachShader(this->Program, fragment);
		glLinkProgram(this->Program);
		// Print linking errors if any
		glGetProgramiv(this->Program, GL_LINK_STATUS, &success);
		if (!success)
		{
			glGetProgramInfoLog(this->Program, 512, NULL, infoLog);
			std::cout << "ERROR::SHADER::PROGRAM::LINKING_FAILED\n" << infoLog << std::endl;
		}
		// Delete the shaders as they're linked into our program now and no longer necessery
		glDeleteShader(vertex);
		glDeleteShader(fragment);

	}
	// Uses the current shader
	void Use()
	{
		glUseProgram(this->Program);
	}
};

#endif

lighting.vs

#version 330 core
layout(location = 0) in vec3 position;
layout(location = 1) in vec3 normal;

out vec3 Normal;
out vec3 FragPos;

uniform mat4 model;
uniform mat4 view;
uniform mat4 projection;

void main()
{
	gl_Position = projection * view *  model * vec4(position, 1.0f);
	FragPos = vec3(model * vec4(position, 1.0f));
	Normal = mat3(transpose(inverse(model))) * normal;
}

lighting.frag

#version 330 core
out vec4 color;

in vec3 FragPos;
in vec3 Normal;

uniform vec3 lightPos;
uniform vec3 viewPos;
uniform vec3 lightColor;
uniform vec3 objectColor;

void main()
{
	// Ambient
	float ambientStrength = 0.1f;
	vec3 ambient = ambientStrength * lightColor;

	// Diffuse 
	vec3 norm = normalize(Normal);
	vec3 lightDir = normalize(lightPos - FragPos);
	float diff = max(dot(norm, lightDir), 0.0);
	vec3 diffuse = diff * lightColor;

	// Specular
	float specularStrength = 0.5f;
	vec3 viewDir = normalize(viewPos - FragPos);
	vec3 reflectDir = reflect(-lightDir, norm);
	float spec = pow(max(dot(viewDir, reflectDir), 0.0), 32);
	vec3 specular = specularStrength * spec * lightColor;

	vec3 result = (ambient + diffuse + specular) * objectColor;
	color = vec4(result, 1.0f);
}

lamp.vs

#version 330 core
layout(location = 0) in vec3 position;

uniform mat4 model;
uniform mat4 view;
uniform mat4 projection;

void main()
{
	gl_Position = projection * view * model * vec4(position, 1.0f);
}

lamp.frag

#version 330 core
out vec4 color;

void main()
{
	color = vec4(1.0f);
}

猜你喜欢

转载自blog.csdn.net/qq_35294564/article/details/86317355