java面试题ConcurrentHashMap 的工作原理及代码实现

ConcurrentHashMap 的工作原理及代码实现
ConcurrentHashMap 的工作原理及代码实现
HashTable里使用的是synchronized关键字,这其实是对对象加锁,锁住的都是对象整体,当Hashtable的大小增加到一定的时候,性能会急剧下降,因为迭代时需要被锁定很长的时间。

ConcurrentHashMap算是对上述问题的优化,其构造函数如下,默认传入的是16,0.75,16。
public ConcurrentHashMap(int paramInt1, float paramFloat, int paramInt2) {
//…
int i = 0;
int j = 1;
while (j < paramInt2) {
++i;
j <<= 1;
}
this.segmentShift = (32 - i);
this.segmentMask = (j - 1);
this.segments = Segment.newArray(j);
//…
int k = paramInt1 / j;
if (k * j < paramInt1)
++k;
int l = 1;
while (l < k)
l <<= 1;

for (int i1 = 0; i1 < this.segments.length; ++i1)
this.segments[i1] = new Segment(l, paramFloat);
}
public V put(K paramK, V paramV) {
if (paramV == null)
throw new NullPointerException();
int i = hash(paramK.hashCode()); //这里的hash函数和HashMap中的不一样
return this.segments[(i >>> this.segmentShift & this.segmentMask)].put(paramK, i, paramV, false);
}

ConcurrentHashMap引入了分割(Segment),上面代码中的最后一行其实就可以理解为把一个大的Map拆分成N个小的HashTable,在put方法中,会根据hash(paramK.hashCode())来决定具体存放进哪个Segment,如果查看Segment的put操作,我们会发现内部使用的同步机制是基于lock操作的,这样就可以对Map的一部分(Segment)进行上锁,这样影响的只是将要放入同一个Segment的元素的put操作,保证同步的时候,锁住的不是整个Map(HashTable就是这么做的),相对于HashTable提高了多线程环境下的性能,因此HashTable已经被淘汰了。

https://crossoverjie.top/2018/07/23/java-senior/ConcurrentHashMap/

前言
Map 这样的 Key Value 在软件开发中是非常经典的结构,常用于在内存中存放数据。

本篇主要想讨论 ConcurrentHashMap 这样一个并发容器,在正式开始之前我觉得有必要谈谈 HashMap,没有它就不会有后面的 ConcurrentHashMap。

HashMap
众所周知 HashMap 底层是基于 数组 + 链表 组成的,不过在 jdk1.7 和 1.8 中具体实现稍有不同。

Base 1.7
1.7 中的数据结构图:

在这里插入图片描述
1.7
在这里插入图片描述

这是 HashMap 中比较核心的几个成员变量;看看分别是什么意思?

初始化桶大小,因为底层是数组,所以这是数组默认的大小。
桶最大值。
默认的负载因子(0.75)
table 真正存放数据的数组。
Map 存放数量的大小。
桶大小,可在初始化时显式指定。
负载因子,可在初始化时显式指定。

Entry 是 HashMap 中的一个内部类,从他的成员变量很容易看出:

key 就是写入时的键。
value 自然就是值。
开始的时候就提到 HashMap 是由数组和链表组成,所以这个 next 就是用于实现链表结构。
hash 存放的是当前 key 的 hashcode。

put 方法

判断当前数组是否需要初始化。
如果 key 为空,则 put 一个空值进去。
根据 key 计算出 hashcode。
根据计算出的 hashcode 定位出所在桶。
如果桶是一个链表则需要遍历判断里面的 hashcode、key 是否和传入 key 相等,如果相等则进行覆盖,并返回原来的值。
如果桶是空的,说明当前位置没有数据存入;新增一个 Entry 对象写入当前位置。

get 方法
再来看看 get 函数:
首先也是根据 key 计算出 hashcode,然后定位到具体的桶中。
判断该位置是否为链表。
不是链表就根据 key、key 的 hashcode 是否相等来返回值。
为链表则需要遍历直到 key 及 hashcode 相等时候就返回值。
啥都没取到就直接返回 null 。

Base 1.8
不知道 1.7 的实现大家看出需要优化的点没有?

其实一个很明显的地方就是:

当 Hash 冲突严重时,在桶上形成的链表会变的越来越长,这样在查询时的效率就会越来越低;时间复杂度为 O(N)。

因此 1.8 中重点优化了这个查询效率。

在这里插入图片描述

和 1.7 大体上都差不多,还是有几个重要的区别:

TREEIFY_THRESHOLD 用于判断是否需要将链表转换为红黑树的阈值。
HashEntry 修改为 Node。
Node 的核心组成其实也是和 1.7 中的 HashEntry 一样,存放的都是 key value hashcode next 等数据。

再来看看核心方法。

put 方法

看似要比 1.7 的复杂,我们一步步拆解:

判断当前桶是否为空,空的就需要初始化(resize 中会判断是否进行初始化)。
根据当前 key 的 hashcode 定位到具体的桶中并判断是否为空,为空表明没有 Hash 冲突就直接在当前位置创建一个新桶即可。
如果当前桶有值( Hash 冲突),那么就要比较当前桶中的 key、key 的 hashcode 与写入的 key 是否相等,相等就赋值给 e,在第 8 步的时候会统一进行赋值及返回。
如果当前桶为红黑树,那就要按照红黑树的方式写入数据。
如果是个链表,就需要将当前的 key、value 封装成一个新节点写入到当前桶的后面(形成链表)。
接着判断当前链表的大小是否大于预设的阈值,大于时就要转换为红黑树。
如果在遍历过程中找到 key 相同时直接退出遍历。
如果 e != null 就相当于存在相同的 key,那就需要将值覆盖。
最后判断是否需要进行扩容。

get 方法

get 方法看起来就要简单许多了。

首先将 key hash 之后取得所定位的桶。
如果桶为空则直接返回 null 。
否则判断桶的第一个位置(有可能是链表、红黑树)的 key 是否为查询的 key,是就直接返回 value。
如果第一个不匹配,则判断它的下一个是红黑树还是链表。
红黑树就按照树的查找方式返回值。
不然就按照链表的方式遍历匹配返回值。
从这两个核心方法(get/put)可以看出 1.8 中对大链表做了优化,修改为红黑树之后查询效率直接提高到了 O(logn)。

但是 HashMap 原有的问题也都存在,比如在并发场景下使用时容易出现死循环。

强烈建议使用第一种 EntrySet 进行遍历。

第一种可以把 key value 同时取出,第二种还得需要通过 key 取一次 value,效率较低。

简单总结下 HashMap:无论是 1.7 还是 1.8 其实都能看出 JDK 没有对它做任何的同步操作,所以并发会出问题,甚至 1.7 中出现死循环导致系统不可用(1.8 已经修复死循环问题)。

因此 JDK 推出了专项专用的 ConcurrentHashMap ,该类位于 java.util.concurrent 包下,专门用于解决并发问题。

坚持看到这里的朋友算是已经把 ConcurrentHashMap 的基础已经打牢了,下面正式开始分析。

ConcurrentHashMap
ConcurrentHashMap 同样也分为 1.7 、1.8 版,两者在实现上略有不同。

Base 1.7
Segment 是 ConcurrentHashMap 的一个内部类,主要的组成如下:
和 HashMap 非常类似,唯一的区别就是其中的核心数据如 value ,以及链表都是 volatile 修饰的,保证了获取时的可见性。

原理上来说:ConcurrentHashMap 采用了分段锁技术,其中 Segment 继承于 ReentrantLock。不会像 HashTable 那样不管是 put 还是 get 操作都需要做同步处理,理论上 ConcurrentHashMap 支持 CurrencyLevel (Segment 数组数量)的线程并发。每当一个线程占用锁访问一个 Segment 时,不会影响到其他的 Segment。

下面也来看看核心的 put get 方法。

put

将当前 Segment 中的 table 通过 key 的 hashcode 定位到 HashEntry。
遍历该 HashEntry,如果不为空则判断传入的 key 和当前遍历的 key 是否相等,相等则覆盖旧的 value。
不为空则需要新建一个 HashEntry 并加入到 Segment 中,同时会先判断是否需要扩容。
最后会解除在 1 中所获取当前 Segment 的锁。

get 逻辑比较简单:

只需要将 Key 通过 Hash 之后定位到具体的 Segment ,再通过一次 Hash 定位到具体的元素上。

由于 HashEntry 中的 value 属性是用 volatile 关键词修饰的,保证了内存可见性,所以每次获取时都是最新值。

ConcurrentHashMap 的 get 方法是非常高效的,因为整个过程都不需要加锁。

Base 1.8

也将 1.7 中存放数据的 HashEntry 改为 Node,但作用都是相同的。

其中的 val next 都用了 volatile 修饰,保证了可见性。
put

根据 key 计算出 hashcode 。
判断是否需要进行初始化。
f 即为当前 key 定位出的 Node,如果为空表示当前位置可以写入数据,利用 CAS 尝试写入,失败则自旋保证成功。
如果当前位置的 hashcode == MOVED == -1,则需要进行扩容。
如果都不满足,则利用 synchronized 锁写入数据。
如果数量大于 TREEIFY_THRESHOLD 则要转换为红黑树。

get
根据计算出来的 hashcode 寻址,如果就在桶上那么直接返回值。
如果是红黑树那就按照树的方式获取值。
就不满足那就按照链表的方式遍历获取值。
1.8 在 1.7 的数据结构上做了大的改动,采用红黑树之后可以保证查询效率(O(logn)),甚至取消了 ReentrantLock 改为了 synchronized,这样可以看出在新版的 JDK 中对 synchronized 优化是很到位的。

总结
看完了整个 HashMap 和 ConcurrentHashMap 在 1.7 和 1.8 中不同的实现方式相信大家对他们的理解应该会更加到位。

其实这块也是面试的重点内容,通常的套路是:

谈谈你理解的 HashMap,讲讲其中的 get put 过程。
1.8 做了什么优化?
是线程安全的嘛?
不安全会导致哪些问题?
如何解决?有没有线程安全的并发容器?
ConcurrentHashMap 是如何实现的? 1.7、1.8 实现有何不同?为什么这么做?
这一串问题相信大家仔细看完都能怼回面试官。

除了面试会问到之外平时的应用其实也蛮多,像之前谈到的 Guava 中 Cache 的实现就是利用 ConcurrentHashMap 的思想。

https://www.jianshu.com/p/d10256f0ebea

猜你喜欢

转载自blog.csdn.net/qq_35967283/article/details/86497796
今日推荐