Lock 的使用

版权声明:本文为博主原创文章,未经博主允许不得转载。 https://blog.csdn.net/tinyDolphin/article/details/79273103

Lock 的使用

使用 ReentrantLock 类

lock():获取锁

unlock():释放锁

效果和 synchronized 关键字一样。

使用 Condition 实现等待/通知

  • Object.wait() == Condition.await()
  • Object.wait(long timeout) == Condition.await(long time,TimeUnit unit)
  • Object.notify() == Condition.signal()
  • Object.notifyAll == Condition.signalAll()

以上的方法,必须在调用 lock.lock() 方法获取同步监视器之后调用。

如何实现通知部分线程:使用多个 Condition,各自通知自己。

实现生产者/消费者模式:一对一交替打印

import java.util.concurrent.locks.Condition;
import java.util.concurrent.locks.ReentrantLock;

public class MyService {
    private ReentrantLock lock = new ReentrantLock();
    Condition condition = lock.newCondition();
    private boolean hasValue = false;
    public void set(){
        try {
            lock.lock();
            while(hasValue){
                condition.await();
            }
            System.out.println("★");
            hasValue = true;
            condition.signal();
        }catch (InterruptedException e){
            e.printStackTrace();
        }finally {
            lock.unlock();
        }
    }
    public void get(){
        try {
            lock.lock();
            while(!hasValue){
                condition.await();
            }
            System.out.println("☆");
            hasValue = false;
            condition.signal();
        }catch (InterruptedException e){
            e.printStackTrace();
        }finally {
            lock.unlock();
        }
    }
}
public class MyThreadA implements Runnable {

    private MyService myService;

    public MyThreadA(MyService myService) {
        super();
        this.myService = myService;
    }

    @Override
    public void run() {
        for (int i = 0; i < Integer.MAX_VALUE; i++) {
            myService.set();
        }
    }
}
public class MyThreadB implements Runnable {

    private MyService myService;

    public MyThreadB(MyService myService) {
        super();
        this.myService = myService;
    }

    @Override
    public void run() {
        for (int i = 0; i < Integer.MAX_VALUE; i++) {
            myService.get();
        }
    }
}
public class Run {
    public static void main(String[] args) {
        MyService myService = new MyService();
        MyThreadA myThreadA = new MyThreadA(myService);
        new Thread(myThreadA).start();
        MyThreadB myThreadB = new MyThreadB(myService);
        new Thread(myThreadB).start();
    }
}

公平锁与非公平锁

公平锁:线程获取锁的顺序是按照线程加载的顺序来分配的(先来先得 FIFO)

非公平锁:一种获取锁的抢占机制,是随机获得锁的

  • new ReentrantLock(true); // 公平锁
  • new ReentrantLock(false); // 非公平锁(默认这种,空构造函数)

Lock 常用方法

getHoldCount()、getQueueLength()和getWaitQueueLength()

  • int getHoldCount():查询当前线程保持此锁定的个数(调用 lock() 方法的次数
  • int getQueueLength():返回正等待获取此锁定的线程估计数(等待 lock 释放的线程数
  • int getWaitQueueLength(Condition condition):返回等待与此锁定相关的给定条件 Condition 的线程估计数(执行同一个condition.await()方法的线程数

hasQueuedThread()、hasQueuedThreads()和hasWaiters()

  • boolean hasQueuedThread(Thread thread):查询指定的线程是否正在等待获取此锁定
  • boolean hasQueuedThreads():查询是否有线程正在等待获取此锁定
  • boolean hasWaiters(Condition condition):查询是否有线程正在等待与此锁定有关的 condition 条件

isFair()、isHeldByCurrentThread()和isLocked()

  • boolean isFair():判断是不是公平锁
  • boolean isHeldByCurrentThread():查询当前线程是否保持此锁定
  • boolean isLocked():查询此锁定是否由任意线程保持

lockInterruptibly()、tryLock()和tryLock(long timeout,TimeUnit unit)

  • void lockInterruptibly():如果当前线程未被中断,则获取此锁定,如果已经被中断则出现异常
  • boolean tryLock():仅在调用时锁定未被另一个线程保持的情况下,才获取该锁定
  • boolean tryLock(long timeout,TimeUnit unit):如果锁定在给定等待时间内没有被另一个线程保持,且当前线程未被中断,则获取该锁定

使用 Condition 实现顺序执行

使用 Condition 对象,可以对线程执行的业务进行排序规划

import java.util.concurrent.locks.Condition;
import java.util.concurrent.locks.ReentrantLock;

public class Run {

    volatile private static int nextPrintWho = 1;
    private static ReentrantLock lock = new ReentrantLock();
    final private static Condition conditionA = lock.newCondition();
    final private static Condition conditionB = lock.newCondition();
    final private static Condition conditionC = lock.newCondition();

    public static void main(String[] args) {
        Runnable runnableA = new Runnable() {
            @Override
            public void run() {
                try {
                    lock.lock();
                    while (nextPrintWho != 1) {
                        conditionA.await();
                    }
                    for (int i = 0; i < 3; i++) {
                        System.out.println("ThreadA " + (i + 1));
                    }
                    nextPrintWho = 2;
                    conditionB.signalAll();
                } catch (InterruptedException e) {
                    e.printStackTrace();
                } finally {
                    lock.unlock();
                }
            }
        };

        Runnable runnableB = new Runnable() {
            @Override
            public void run() {
                try {
                    lock.lock();
                    while (nextPrintWho != 2) {
                        conditionB.await();
                    }
                    for (int i = 0; i < 3; i++) {
                        System.out.println("ThreadB " + (i + 1));
                    }
                    nextPrintWho = 3;
                    conditionC.signalAll();
                } catch (InterruptedException e) {
                    e.printStackTrace();
                } finally {
                    lock.unlock();
                }
            }
        };

        Runnable runnableC = new Runnable() {
            @Override
            public void run() {
                try {
                    lock.lock();
                    while (nextPrintWho != 3) {
                        conditionC.await();
                    }
                    for (int i = 0; i < 3; i++) {
                        System.out.println("ThreadC " + (i + 1));
                    }
                    nextPrintWho = 1;
                    conditionA.signalAll();
                } catch (InterruptedException e) {
                    e.printStackTrace();
                } finally {
                    lock.unlock();
                }
            }
        };

        for (int i = 0; i < 5; i++) {
            new Thread(runnableA).start();
            new Thread(runnableB).start();
            new Thread(runnableC).start();
        }
    }
}

使用 ReentrantReadWriteLock 类

读写锁有两个锁:一个操作相关锁(共享锁),一个操作相关锁(排他锁)。

  • 多个 Thread 可以同时进行读取操作
  • 同一时刻只允许一个 Thread 进行写入操作
import java.util.concurrent.locks.ReentrantReadWriteLock;

public class Run {
    public static void main(String[] args) throws InterruptedException {

        ReentrantReadWriteLock lock = new ReentrantReadWriteLock();

        Runnable read = new Runnable() {
            @Override
            public void run() {
                try {
                    try {
                        lock.readLock().lock();
                        System.out.println("获得读锁 " + Thread.currentThread().getName() + " " + System
                                .currentTimeMillis());
                        Thread.sleep(3000);
                    } finally {
                        lock.readLock().unlock();
                    }
                } catch (InterruptedException e) {
                    e.printStackTrace();
                }
            }
        };

        Runnable write = new Runnable() {
            @Override
            public void run() {
                try {
                    try {
                        lock.writeLock().lock();
                        System.out.println("获得写锁 " + Thread.currentThread().getName() + " " + System
                                .currentTimeMillis());
                        Thread.sleep(3000);
                    } finally {
                        lock.writeLock().unlock();
                    }
                } catch (InterruptedException e) {
                    e.printStackTrace();
                }
            }
        };

        System.out.println("读读共享:");
        new Thread(read).start();
        new Thread(read).start();

        Thread.sleep(10000);

        System.out.println("写写互斥");
        new Thread(write).start();
        new Thread(write).start();

        Thread.sleep(10000);

        System.out.println("读写互斥");
        new Thread(read).start();
        Thread.sleep(1000);
        new Thread(write).start();

        Thread.sleep(10000);

        System.out.println("写读互斥");
        new Thread(write).start();
        Thread.sleep(1000);
        new Thread(read).start();
    }
}

结果分析

猜你喜欢

转载自blog.csdn.net/tinyDolphin/article/details/79273103