TUM Visual-Inertial Dataset介绍与尝试 The TUM VI Benchmark for Evaluating Visual-Inertial Odometry论文翻译

前言

做SLAM或是CV方向的应该大都接触过TUM提供的各种数据集,如RGBD数据集、单目数据集等。最近TUM发布了关于VIO即视觉惯性状态估计的对应数据集,成为了继飞行数据集EuRoc、MAV、车辆数据集Kitti等之后的又一个常用大型数据集。
本博客将就其数据集的论文《The TUM VI Benchmark for Evaluating Visual-Inertial Odometry》对TUM VIO数据集进行简要介绍,并用VINS跑跑看。

数据集链接:https://vision.in.tum.de/data/datasets/visual-inertial-dataset

摘要

视觉里程计和SLAM方法在诸如AR或机器人之类的领域中具有广泛的应用。惯性测量辅助视觉传感器极大地提高了跟踪精度和鲁棒性,引发了对视觉惯性(VI)里程计开发的极大兴趣。在本文中,我们提出了TUM VI基准测试集,这是一种新颖的数据集,在不同的场景中具有多种序列,用于评估VIO。它提供具有1024x1024分辨率,20 Hz,高动态范围和光度校准的相机图像。 IMU以200 Hz的频率测量3个轴上的加速度和角速度,而摄像机和IMU传感器在硬件中进行时间同步。对于轨迹评估,我们还在序列的开始和结束处以高频率(120 Hz)从运动捕捉系统中提供准确的姿态地面真值,我们准确地将其与摄像机和IMU测量对准。具有原始数据和校准数据的完整数据集可公开获取。我们还在数据集上评估了最先进的VIO方法。

相关工作

表I介绍了包含视觉和IMU数据的最相关数据集。
在这里插入图片描述

The EuRoC MAV、PennCOSYVIO 、Zurich Urban MAV等数据集并不包含光度校准,也不包含IMU和相机图像的准确ground truth(即真值)或时间同步,而TUM的基准测试集就具备。
在这里插入图片描述

传感器设置与校准参数

如图2,传感器设置包括两个单色相机组成的深度相机和IMU。左图显示了所有相关坐标系的示意图。 我们规定:位姿变换矩阵 T B A T_{BA}∈ SE(3)表示从A坐标系 p A R 3 p_{A}∈R^3 到B坐标系 p B = T B A p A p_{B}=T_{BA}p_{A} 的变换。对于坐标系,使用以下缩写:

缩写 含义
I IMU
C0 camera 0
C1 camera 1
M IR-reflective markers
G grid of AprilTags
W world frame(reference frame of MoCap system)

在这里插入图片描述

Time Alignment, Hand-Eye Calibration, IMU Axis Scaling and Misalignment

T_i_c0:
  -0.999506  0.00759167   -0.030488   0.0447659
  0.0302105  -0.0343071   -0.998955  -0.0755245
-0.00862969   -0.999383   0.0340608  -0.0465419
          0           0           0           1
T_i_c1:
  -0.999497  0.00813335  -0.0306525  -0.0561178
  0.0307588   0.0132798   -0.999439  -0.0738562
-0.00772172   -0.999879  -0.0135233  -0.0494102
          0           0           0           1
T_w_moc:
  -0.999641   0.0266075 -0.00313757    0.146549
-0.00698843   -0.145899    0.989275   -0.192952
  0.0258644    0.988942    0.146032    0.766471
          0           0           0           1
T_mark_i:
    0.99975  -0.0167084   0.0148858  -0.0105073
  0.0166986     0.99986 0.000784897  -0.0596456
 -0.0148968 -0.00053613    0.999889  -0.0389606
          0           0           0           1
cam_time_offset_ns: 126788
mocap_time_offset_ns: -6022600
accel_bias:  -1.30318 -0.391441  0.380509
accel_scale:
     1.00422            0            0
-7.82123e-05      1.00136            0
  -0.0097745 -0.000976476     0.970467
gyro_bias:  0.0283122 0.00723077  0.0165292
gyro_scale:
   0.943611  0.00148681 0.000824366
0.000369694     1.09413 -0.00273521
-0.00175252  0.00834754     1.01588

IMU参数校准

rostopic: /imu0
update_rate: 200.0  # Hz

# Values from allan plots
# sequence: dataset-calib-imu-static2.bag (full data range)
#accelerometer_noise_density: 0.0014     # m/s^1.5
#accelerometer_random_walk:   0.000086   # m/s^2.5
#gyroscope_noise_density:     0.000080   # rad/s^0.5
#gyroscope_random_walk:       0.0000022  # rad/s^1.5

# Inflated values (to account for unmodelled effects)
# Those values work well with Kalibr cam-imu calibration.
#  - white noise multiplied by 2
#  - bias random walk multiplied by 10
accelerometer_noise_density: 0.0028     # m/s^1.5
accelerometer_random_walk:   0.00086    # m/s^2.5
gyroscope_noise_density:     0.00016    # rad/s^0.5
gyroscope_random_walk:       0.000022   # rad/s^1.5

数据集

序列

校准序列

  • calib-cam
    用于校准相机内参和深度相机的外参。 以低帧速率记录了AprilTags网格,其中视角和摄像机运动变化较小。
  • calib-imu
    用于cam-imu校准以找到相机和IMU之间的相对位姿。 包括激发所有6个自由度April网格前的快速运动。 选择短时曝光以避免运动模糊。
  • calib-vignette
    用于晕影校准。 带有校准标签的特征运动在白墙前方。
  • imu-static
    只有IMU数据以估算噪声和随机游走参数(静止111小时)。

数据集序列

  • room
    房间内带有运动捕捉系统的序列,可以在整个轨迹中提供 ground truth。
  • corridor
    走廊和几个办公室中的序列,可以为开始和结束段提供 ground truth。
  • magistrale
    在大学建筑的中央大厅移动的序列,开始和结束段提供ground truth。
  • outdoors
    在大学校园外移动的序列,开始和结束段提供ground truth。
  • slides
    在大学建筑的中央大厅移动的序列,其中小部分在没有视觉特征的封闭管中运动,开始和结束段提供ground truth。

格式

1)ROS Bag Files
对于每个序列,我们提供三种不同的ROS包文件,原始包和两种校准包。

原始包包含在手眼标定、时移或IMU校准之前已记录的数据。 它们包括以下topic:
/cam0/image raw
/cam1/image raw
/imu0
/vrpn client/raw transform
前两个包含有相机的图像。 消息中的大多数字段都是一目了然的并遵循标准约定。但请注意frame_id提供以纳秒为单位的曝光时间。
在IMU topic中,我们没有给出方向,但我们使用orientation covariance的第二项来提供IMU的摄氏度温度。 最后一个topic包含原始动作捕捉位姿TWM。 对于每个位姿,动作捕捉时间中都有一个时间戳,一个平移向量和一个旋转四元数。

校准包包含与原始包相同的主题,但具有校准数据。 不同之处是:
1、动作捕捉位姿已与IMU坐标系对齐(通过手眼校准,TWI
2、使用中值滤波器移除动作捕捉位姿的异常值
3、通过使用时移校准,动作捕捉位姿的时间戳与IMU时间同步
4、IMU数据已根据以下两式进行处理
在这里插入图片描述

提供两种校准包:一种具有全分辨率,一种具有四分之一分辨率(每个尺寸的半分辨率)。 下采样版本有助于使用存储或带宽受限制的用户。
其中校准包下载地址:
Bag 1024×1024: http://vision.in.tum.de/tumvi/calibrated/1024_16/
Bag 512×512: http://vision.in.tum.de/tumvi/calibrated/512_16/

评估结果

下表为使用TUM的基准数据集来评估最先进的单目和双目视觉惯性方法的性能。
在这里插入图片描述

我的实验

TUM的网站上并没有提供VINS的配置文件,原本以为还需要自己写,后来发现最新的VINS-Mono已经配置好了图像下采样版本的yaml,直接用就可以。这里我使用了corridor4的校准数据集,因为其最小。

    roslaunch vins_estimator tum.launch 
    roslaunch vins_estimator vins_rviz.launch
    rosbag play /home/your path/dataset/dataset-corridor4_512_16.bag

运行结果图
过程中可以看到设备在一个房间中乱晃,然后经过一条长走廊再往回走,最后仍能回到最初的房间。

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
这个是TUM对corridor4使用不同的VIO算法得到的轨迹图。

接下来还需要再研究一下如何与动作捕捉的 ground truth以衡量误差。

猜你喜欢

转载自blog.csdn.net/qq_41839222/article/details/86180964
今日推荐