[Codeforces Round #250 (Div. 1) -E] The Child and Binary Tree

版权声明:欢迎转载蒟蒻博客,但请注明出处: https://blog.csdn.net/LPA20020220/article/details/85271831

Codeforces传送门

洛谷传送门

题目翻译

我们的小朋友很喜欢计算机科学,而且尤其喜欢二叉树。 考虑一个含有 n n 个互异正整数的序列 c [ 1 ] , c [ 2 ] , . . . , c [ n ] c[1],c[2],...,c[n] 。如果一棵带点权的有根二叉树满足其所有顶点的权值都在集合 { c [ 1 ] , c [ 2 ] , . . . , c [ n ] } \{c[1],c[2],...,c[n]\} 中,我们的小朋友就会将其称作神犇的。并且他认为,一棵带点权的树的权值,是其所有顶点权值的总和。 给出一个整数 m m ,你能对于任意的 s ( 1 s m ) s(1\le s\le m) 计算出权值为 s s 的神犇二叉树的个数吗?请参照样例以更好的理解什么样的两棵二叉树会被视为不同的。 我们只需要知道答案关于 998244353 998244353 取模后的值。

输入第一行有 2 2 个整数 n , m ( 1 n 1 0 5 ; 1 m 1 0 5 ) n,m(1\le n\le 10^5; 1\le m\le 10^5) 。 第二行有 n n 个用空格隔开的互异的整数 c [ 1 ] , c [ 2 ] , . . . , c [ n ] 1 c [ i ] 1 0 5 ) c[1],c[2],...,c[n](1\le c[i]\le 10^5)

输出 m m 行,每行有一个整数。第 i i 行应当含有权值恰为 i i 神犇二叉树的总数。请输出答案关于 998244353 ( = 7 × 17 × 2 23 + 1 = 7 × 17 × 223 + 1 998244353(=7\times 17\times 2^{23}+1=7×17×223+1 ,一个质数)取模后的结果。

输入输出样例

输入样例#1:

2 3
1 2

输出样例#1:

1
3
9

输入样例#2:

3 10
9 4 3

输出样例#2:

0
0
1
1
0
2
4
2
6
15

输入样例#3:

5 10
13 10 6 4 15

输出样例#3:

0
0
0
1
0
1
0
2
0
5

解题分析

考虑每个单独的点的生成函数, 显然为 r ( x ) = i S x i r(x)=\sum_{i\in S}x^i

由于二叉树的结构可以递归形成, 那么对于一个子树的根节点, 设其生成函数为 F ( x ) F(x) , 那么显然就有 F ( x ) = r ( x ) F 2 ( x ) + 1 F(x)=r(x)F^2(x)+1 (空树的情况要单独算, 不能放进生成函数里, 具体大家可以推几步就知道了)。

由求根公式可得 F ( x ) = 1 ± 1 4 r ( x ) 2 r ( x ) F(x)=\frac{1\pm\sqrt{1-4r(x)}}{2r(x)}

先不论上面的正负号怎么取, 下面的 2 r ( x ) 2r(x) 显然是没有 0 0 次项, 也就无法求逆。

然后有个显然的转化: 上下同乘 1 1 4 r ( x ) 1\mp \sqrt{1-4r(x)} ,可得 F ( x ) = 2 1 1 4 r ( x ) F(x)=\frac{2}{1\mp\sqrt{1-4r(x)}} ,那么如果取到负号还是没有零次项, 并且 F ( x ) F(x) 0 0 次项系数应该为 1 1 , 不满足这个条件。所以最后的解为 2 1 + 1 4 r ( x ) \frac{2}{1+\sqrt{1-4r(x)}}

接下来考虑如何开根。设 F ( x ) = A ( x ) F(x)=\sqrt{A(x)} 还是那个牛顿迭代的套路:
F ( x ) = F 0 ( x ) G ( F 0 ( x ) ) G ( F 0 ( x ) ) F(x)=F_0(x)-\frac{G(F_0(x))}{G'(F_0(x))}
在这里 G ( F ( x ) ) = F 2 ( x ) A ( x ) G(F(x))=F^2(x)-A(x) , 那么就有 F ( x ) = F 0 ( x ) F 0 2 ( x ) A ( x ) 2 F 0 ( x ) F(x)=F_0(x)-\frac{F_0^2(x)-A(x)}{2F_0(x)}

递归处理即可。

代码如下:

#include <cstdio>
#include <cmath>
#include <cctype>
#include <cstring>
#include <cstdlib>
#include <algorithm>
#define R register
#define IN inline
#define W while
#define gc getchar()
#define MX 400500
#define ll long long
#define G 3
#define Ginv 332748118
#define MOD 998244353
template <class T>
IN void in(T &x)
{
	x = 0; R char c = gc;
	for (; !isdigit(c); c = gc);
	for (;  isdigit(c); c = gc)
	x = (x << 1) + (x << 3) + c - 48;
}
IN int fpow(R int base, R int tim)
{
	int ret = 1;
	W (tim)
	{
		if (tim & 1) ret = 1ll * ret * base % MOD;
		base = 1ll * base * base % MOD, tim >>= 1;
	}
	return ret;
}
int n, m;
int a1[MX], a2[MX], b[MX], c[MX], d[MX], e[MX], f[MX], g[MX];
int r[MX], rev[MX], ans[MX];
namespace Poly
{
	IN void NTT(int *dat, R int len, R bool typ)
	{
		for (R int i = 1; i < len; ++i) if (rev[i] > i) std::swap(dat[rev[i]], dat[i]);
		R int seg, step, bd, cur, now, buf1, buf2, deal, base;
		for (seg = 1; seg < len; seg <<= 1)
		{
			base = fpow(typ ? G : Ginv, (MOD - 1) / (seg << 1)), step = seg << 1;
			for (now = 0; now < len; now += step)
			{
				deal = 1, bd = now + seg;
				for (cur = now; cur < bd; ++cur, deal = 1ll * deal * base % MOD)
				{
					buf1 = dat[cur], buf2 = 1ll * dat[cur + seg] * deal % MOD;
					dat[cur] = (buf1 + buf2) % MOD, dat[cur + seg] = (buf1 - buf2 + MOD) % MOD;
				}
			}
		}
		if (typ) return; int inv = fpow(len, MOD - 2);
		for (R int i = 0; i < len; ++i) dat[i] = 1ll * dat[i] * inv % MOD;
	}
	void Getinv(R int up, R int lg, int *ind, int *ans)
	{
		if (up == 1) return ans[0] = fpow(ind[0], MOD - 2), void();
		Getinv(up >> 1, lg - 1, ind, ans);
		int len = up << 1, half = up >> 1; lg++;
		for (R int i = 1; i < len; ++i) rev[i] = (rev[i >> 1] >> 1) | ((i & 1) << lg - 1);
		for (R int i = 0; i < len; ++i) a1[i] = a2[i] = 0;
		for (R int i = 0; i < half; ++i) a1[i] = ans[i];
		for (R int i = 0; i < up; ++i) a2[i] = ind[i];
		NTT(a1, len, 1), NTT(a2, len, 1);
		for (R int i = 0; i < len; ++i) a1[i] = (a1[i] * 2 % MOD - 1ll * a1[i] * a1[i] % MOD * a2[i] % MOD + MOD) % MOD;
		NTT(a1, len, 0);
		for (R int i = 0; i < up; ++i) ans[i] = a1[i];
	}
	IN void Getrt(R int up, R int lg, int *ind, int *ans)
	{
		if (up == 1) return ans[0] = 1, void();
		Getrt(up >> 1, lg - 1, ind, ans);
		int len = up << 1, half = up >> 1; lg++;
		for (R int i = 0; i < half; ++i) c[i] = ans[i] * 2 % MOD;
		Getinv(up, lg - 1, c, b);
		for (R int i = 1; i < len; ++i) rev[i] = (rev[i >> 1] >> 1) | ((i & 1) << lg - 1);
		for (R int i = 0; i < len; ++i) a2[i] = 0;
		for (R int i = half; i < len; ++i) a1[i] = 0;
		for (R int i = 0; i < half; ++i) a1[i] = ans[i];
		NTT(a1, len, 1);
		for (R int i = 0; i < len; ++i) a1[i] = 1ll * a1[i] * a1[i] % MOD;
		NTT(a1, len, 0);
		for (R int i = up - 1; i < len; ++i) a1[i] = 0;
		for (R int i = 0; i < up; ++i) a1[i] = (a1[i] + ind[i]) % MOD, a2[i] = b[i];
		NTT(a1, len, 1), NTT(a2, len, 1);
		for (R int i = 0; i < len; ++i) a1[i] = 1ll * a1[i] * a2[i] % MOD;
		NTT(a1, len, 0);
		for (R int i = 0; i < up; ++i) ans[i] = a1[i];
	}
	IN void solve(R int up, R int lg)
	{
		for (R int i = 0; i < up; ++i) d[i] = (MOD - 2 * r[i] % MOD * 2 % MOD) % MOD;
		d[0] = (d[0] + 1) % MOD; Getrt(up, lg, d, e); e[0] = (e[0] + 1) % MOD;
		Getinv(up, lg, e, f);
		for (R int i = 0; i < up; ++i) ans[i] = f[i] * 2 % MOD;
	}
}
int main(void)
{
	in(n), in(m); int foo, len = 1, lg = 0;
	for (R int i = 1; i <= n; ++i) in(foo), r[foo] = 1;
	for (; len <= m; len <<= 1, lg++);
	Poly::solve(len, lg);
	for (R int i = 1; i <= m; ++i) printf("%d\n", ans[i]);
}

猜你喜欢

转载自blog.csdn.net/LPA20020220/article/details/85271831