基于redis做分布式锁

SETNX命令简介

命令格式

SETNX key value

将 key 的值设为 value,当且仅当 key 不存在。 
若给定的 key 已经存在,则 SETNX 不做任何动作。 
SETNX 是SET if Not eXists的简写。

返回值

返回整数,具体为 
- 1,当 key 的值被设置 
- 0,当 key 的值没被设置

例子

redis> SETNX mykey “hello” 
(integer) 1 
redis> SETNX mykey “hello” 
(integer) 0 
redis> GET mykey 
“hello” 
redis>

使用SETNX实现分布式锁

多个进程执行以下Redis命令:

SETNX lock.foo <current Unix time + lock timeout + 1>

如果 SETNX 返回1,说明该进程获得锁,SETNX将键 lock.foo 的值设置为锁的超时时间(当前时间 + 锁的有效时间)。 
如果 SETNX 返回0,说明其他进程已经获得了锁,进程不能进入临界区。进程可以在一个循环中不断地尝试 SETNX 操作,以获得锁。

解决死锁

考虑一种情况,如果进程获得锁后,断开了与 Redis 的连接(可能是进程挂掉,或者网络中断),如果没有有效的释放锁的机制,那么其他进程都会处于一直等待的状态,即出现“死锁”。

上面在使用 SETNX 获得锁时,我们将键 lock.foo 的值设置为锁的有效时间,进程获得锁后,其他进程还会不断的检测锁是否已超时,如果超时,那么等待的进程也将有机会获得锁。

然而,锁超时时,我们不能简单地使用 DEL 命令删除键 lock.foo 以释放锁。考虑以下情况,进程P1已经首先获得了锁 lock.foo,然后进程P1挂掉了。进程P2,P3正在不断地检测锁是否已释放或者已超时,执行流程如下:

  • P2和P3进程读取键 lock.foo 的值,检测锁是否已超时(通过比较当前时间和键 lock.foo 的值来判断是否超时)
  • P2和P3进程发现锁 lock.foo 已超时
  • P2执行 DEL lock.foo命令
  • P2执行 SETNX lock.foo命令,并返回1,即P2获得锁
  • P3执行 DEL lock.foo命令将P2刚刚设置的键 lock.foo 删除(这步是由于P3刚才已检测到锁已超时)
  • P3执行 SETNX lock.foo命令,并返回1,即P3获得锁
  • P2和P3同时获得了锁

从上面的情况可以得知,在检测到锁超时后,进程不能直接简单地执行 DEL 删除键的操作以获得锁。

为了解决上述算法可能出现的多个进程同时获得锁的问题,我们再来看以下的算法。 
我们同样假设进程P1已经首先获得了锁 lock.foo,然后进程P1挂掉了。接下来的情况:

  • 进程P4执行 SETNX lock.foo 以尝试获取锁
  • 由于进程P1已获得了锁,所以P4执行 SETNX lock.foo 返回0,即获取锁失败
  • P4执行 GET lock.foo 来检测锁是否已超时,如果没超时,则等待一段时间,再次检测
  • 如果P4检测到锁已超时,即当前的时间大于键 lock.foo 的值,P4会执行以下操作 
    GETSET lock.foo <current Unix timestamp + lock timeout + 1>
  • 由于 GETSET 操作在设置键的值的同时,还会返回键的旧值,通过比较键 lock.foo 的旧值是否小于当前时间,可以判断进程是否已获得锁
  • 假如另一个进程P5也检测到锁已超时,并在P4之前执行了 GETSET 操作,那么P4的 GETSET 操作返回的是一个大于当前时间的时间戳,这样P4就不会获得锁而继续等待。注意到,即使P4接下来将键 lock.foo 的值设置了比P5设置的更大的值也没影响。

另外,值得注意的是,在进程释放锁,即执行 DEL lock.foo 操作前,需要先判断锁是否已超时。如果锁已超时,那么锁可能已由其他进程获得,这时直接执行 DEL lock.foo 操作会导致把其他进程已获得的锁释放掉。

直接上代码跟大家解释:

/**
 * Redis分布式锁(这种方式服务器时间一定要同步,否则会出问题)
 * <p>
 * 执行步骤
 * 1. setnx(lockkey, 当前时间+过期超时时间) ,如果返回1,则获取锁成功;如果返回0则没有获取到锁,转向2。
 * <p>
 * 2. get(lockkey)获取值oldExpireTime ,并将这个value值与当前的系统时间进行比较,如果小于当前系统时间,则认为这个锁已经超时,可以允许别的请求重新获取,转向3。
 * <p>
 * 3. 计算newExpireTime=当前时间+过期超时时间,然后getset(lockkey, newExpireTime) 会返回当前lockkey的值currentExpireTime。
 * <p>
 * 4. 判断currentExpireTime与oldExpireTime 是否相等,如果相等,说明当前getset设置成功,获取到了锁。如果不相等,说明这个锁又被别的请求获取走了,那么当前请求可以直接返回失败,或者继续重试。
 * <p>
 * 5. 在获取到锁之后,当前线程可以开始自己的业务处理,当处理完毕后,比较自己的处理时间和对于锁设置的超时时间,如果小于锁设置的超时时间,则直接执行delete释放锁;如果大于锁设置的超时时间,则不需要再锁进行处理。
 *
 * @author fanglingxiao
 */
public class RedisLock {

    /**
     * 默认请求锁的超时时间(ms 毫秒)
     */
    private static final long TIME_OUT = 100;

    /**
     * 默认锁的有效时间(s)
     */
    public static final int EXPIRE = 60;

    private static Logger logger = LoggerFactory.getLogger(RedisLock.class);

    private RedisTemplate<String, Object> redisTemplate;

    /**
     * 锁标志对应的key
     */
    private String lockKey;
    /**
     * 锁的有效时间(s)
     */
    private int expireTime = EXPIRE;

    /**
     * 请求锁的超时时间(ms)
     */
    private long timeOut = TIME_OUT;

    /**
     * 锁的有效时间
     */
    private long expires = 0;

    /**
     * 锁标记
     */
    private volatile boolean locked = false;

    final Random random = new Random();

    /**
     * 使用默认的锁过期时间和请求锁的超时时间
     *
     * @param redisTemplate
     * @param lockKey       锁的key(Redis的Key)
     */
    public RedisLock(RedisTemplate<String, Object> redisTemplate, String lockKey) {

        if (Strings.isNullOrEmpty(lockKey)) {
            throw new IllegalArgumentException("lockKey invalid.");
        }
        this.redisTemplate = redisTemplate;
        this.lockKey = lockKey + "_lock";
    }

    /**
     * 使用默认的请求锁的超时时间,指定锁的过期时间
     *
     * @param redisTemplate
     * @param lockKey       锁的key(Redis的Key)
     * @param expireTime    锁的过期时间(单位:秒)
     */
    public RedisLock(RedisTemplate<String, Object> redisTemplate, String lockKey, int expireTime) {
        this(redisTemplate, lockKey);
        this.expireTime = expireTime;
    }

    /**
     * 使用默认的锁的过期时间,指定请求锁的超时时间
     *
     * @param redisTemplate
     * @param lockKey       锁的key(Redis的Key)
     * @param timeOut       请求锁的超时时间(单位:毫秒)
     */
    public RedisLock(RedisTemplate<String, Object> redisTemplate, String lockKey, long timeOut) {
        this(redisTemplate, lockKey);
        this.timeOut = timeOut;
    }

    /**
     * 锁的过期时间和请求锁的超时时间都是用指定的值
     *
     * @param redisTemplate
     * @param lockKey       锁的key(Redis的Key)
     * @param expireTime    锁的过期时间(单位:秒)
     * @param timeOut       请求锁的超时时间(单位:毫秒)
     */
    public RedisLock(RedisTemplate<String, Object> redisTemplate, String lockKey, int expireTime, long timeOut) {
        this(redisTemplate, lockKey, expireTime);
        this.timeOut = timeOut;
    }

    /**
     * @return 获取锁的key
     */
    public String getLockKey() {
        return lockKey;
    }

    /**
     * 获得 tryLock.
     * 实现思路: 主要是使用了redis 的setnx命令,缓存了锁.
     * reids缓存的key是锁的key,所有的共享, value是锁的到期时间(注意:这里把过期时间放在value了,没有时间上设置其超时时间)
     * 执行过程:
     * 1.通过setnx尝试设置某个key的值,成功(当前没有这个锁)则返回,成功获得锁
     * 2.锁已经存在则获取锁的到期时间,和当前时间比较,超时的话,则设置新的值
     *
     * @return true if tryLock is acquired, false acquire timeouted
     * @throws InterruptedException in case of thread interruption
     */
    public boolean tryLock() {


        if (Strings.isNullOrEmpty(lockKey)) {
            throw new IllegalArgumentException("lockKey invalid.");
        }

        // 请求锁超时时间,纳秒
        long timeout = timeOut * 1000000;
        // 系统当前时间,纳秒
        long nowTime = System.nanoTime();

        while ((System.nanoTime() - nowTime) < timeout) {
            // 分布式服务器有时差,这里给1秒的误差值
            expires = System.currentTimeMillis() + expireTime * 1000 + 1000;
            //锁到期时间
            String expiresStr = String.valueOf(expires);

            Boolean r = redisTemplate.opsForValue().setIfAbsent(lockKey, expiresStr);
            if (r != null && r) {
                locked = true;
                // 设置锁的有效期,也是锁的自动释放时间,也是一个客户端在其他客户端能抢占锁之前可以执行任务的时间
                // 可以防止因异常情况无法释放锁而造成死锁情况的发生
                redisTemplate.expire(lockKey, expireTime, TimeUnit.SECONDS);

                // 上锁成功结束请求
                return true;
            }
            //redis里的时间
            String currentValueStr = (String) redisTemplate.opsForValue().get(lockKey);
            if (currentValueStr != null && Long.parseLong(currentValueStr) < System.currentTimeMillis()) {
                //判断是否为空,不为空的情况下,如果被其他线程设置了值,则第二个条件判断是过不去的
                // tryLock is expired

                String oldValueStr = (String) redisTemplate.opsForValue().getAndSet(lockKey, expiresStr);
                //获取上一个锁到期时间,并设置现在的锁到期时间,
                //只有一个线程才能获取上一个线上的设置时间,因为jedis.getSet是同步的
                if (oldValueStr != null && oldValueStr.equals(currentValueStr)) {
                    //防止误删(覆盖,因为key是相同的)了他人的锁——这里达不到效果,这里值会被覆盖,但是因为什么相差了很少的时间,所以可以接受

                    //[分布式的情况下]:如过这个时候,多个线程恰好都到了这里,但是只有一个线程的设置值和当前值相同,他才有权利获取锁
                    // tryLock acquired
                    locked = true;
                    return true;
                }
            }

            /*
                延迟10 毫秒,  这里使用随机时间可能会好一点,可以防止饥饿进程的出现,即,当同时到达多个进程,
                只会有一个进程获得锁,其他的都用同样的频率进行尝试,后面有来了一些进行,也以同样的频率申请锁,这将可能导致前面来的锁得不到满足.
                使用随机的等待时间可以一定程度上保证公平性
             */
            try {
                Thread.sleep(50, random.nextInt(50000));
            } catch (InterruptedException e) {
                logger.error("获取分布式锁休眠被中断:", e);
            }

        }
        return locked;
    }


    /**
     * 解锁
     */
    public void unlock() {
        // 只有加锁成功并且锁还有效才去释放锁
        if (locked && expires > System.currentTimeMillis()) {
            redisTemplate.delete(lockKey);
            locked = false;
        }
    }

    public static <T> T lockDistributed(RedisLock locker, Callable<T> callable) {
        checkNotNull(locker);
        checkNotNull(callable);

        try {
            if (locker.tryLock()) {
                return callable.call();
            }
            return null;
        } catch (Exception e) {
            logger.error("execute callable error", e);
            return null;
        } finally {
            locker.unlock();
        }
    }

}

主方法:

通过创建RedisLock的有参构造设置值,通过调用RedisLock的lockDistributed方法去执行tryLock(),当获取锁成功则调用callable的call()方法执行此次操作,最终释放锁。

public static void main(String[] args) {
    RedisLock redisLock = new RedisLock(redisTemplate, "key", 5000L);
        Integer r = RedisLock.lockDistributed(redisLock, () -> {
            //...
            return 0;
        });
} 

猜你喜欢

转载自blog.csdn.net/qq_41670021/article/details/84302675