JVM调优(3)之垃圾回收

版权声明:本文为博主原创文章,未经博主允许不得转载。 https://blog.csdn.net/Allen202/article/details/82466348

从这篇开始我们开始探讨一些jvm调优的问题。在jvm调优中一个离不开的重点是垃圾回收,当垃圾回收成为系统达到更高并发量的瓶颈时,我们就需要对jvm中如果进行“自动化”垃圾回收技术实施必要的监控和调节。

对于调优之前,我们必须要了解其运行原理,java 的垃圾收集Garbage Collection 通常被称为“GC”,它诞生于1960年 MIT 的 Lisp 语言,经过半个多世纪,目前已经十分成熟了。因此本篇主要从这三个方面来了解:

  1. 哪些对象需要被回收?
  2. 什么时候回收?
  3. 如何回收?

一、回收哪些数据

java虚拟机在执行java程序的过程中会把它所管理的内存划分为若干个不同是数据区域,这些区域有各自各自的用途。主要包含以下几个部分组成:
这里写图片描述
这里写图片描述
这里写图片描述

1、程序计数器
程序计数器占用的内存空间我们可以忽略不计,它是每个线程所执行的字节码的行号指示器。

2、虚拟机栈
java的虚拟机栈是线程私有的,生命周期和线程相同。它描述的是方法执行的内存模型。同时用于存储局部变量、操作数栈、动态链接、方法出口等。
3、本地方法栈,类似虚拟机栈,它调用的是是native方法。
4、堆是jvm中管理内存中最大一块。它是被共享,存放对象实例。也被称为“gc堆”。垃圾回收的主要管理区域
5、方法区也是共享的内存区域。它主要存储已被虚拟机加载的类信息、常量、静态变量、即时编译器(jit)编译后的代码数据。

以上就是jvm在运行时期主要的内存组成,我们看到常见的内存使用不但存在于堆中,还会存在于其他区域,虽然堆的管理对程序的管理至关重要,但我们不能只局限于这一个区域,特别是当出现内存泄露的时候,我们除了要排查堆内存的情况,还得考虑虚拟机栈的以及方法区域的情况。知道了要对谁以及那些区域进行内存管理,我还需要知道什么时候对这些区域进行垃圾回收。

二、垃圾回收算法

在垃圾回收之前,我们必须确定的一件事就是对象是否存活?这就牵扯到了判断对象是否存活的算法了。

引用计数(Reference Counting)
比较古老的回收算法。原理是此对象有一个引用,即增加一个计数,删除一个引用则减少一个计数。垃圾回收时,只用收集计数为0的对象。此算法最致命的是无法处理循环引用的问题。。

优点:实现简单,判定效率高效,被actionscript3和python中广泛应用。
缺点:无法解决对象之间的相互引用问题。java没有采纳

根搜索算法
这里写图片描述
根搜索算法是从离散数学中的图论引入的,程序把所有的引用关系看作一张图,从一个节点GC ROOT开始,寻找对应的引用节点,找到这个节点以后,继续寻找这个节点的引用节点,当所有的引用节点寻找完毕之后,剩余的节点则被认为是没有被引用到的节点,即无用的节点。

java中可作为GC Root的对象有
1.虚拟机栈中引用的对象(本地变量表)
2.方法区中静态属性引用的对象
3. 方法区中常量引用的对象
4.本地方法栈中引用的对象(Native对象)

tracing算法
这里写图片描述

标记-清除算法
标记-清除算法采用从根集合进行扫描,对存活的对象对象标记,标记完毕后,再扫描整个空间中未被标记的对象,进行回收,如上图所示。标记-清除算法不需要进行对象的移动,并且仅对不存活的对象进行处理,在存活对象比较多的情况下极为高效,但由于标记-清除算法直接回收不存活的对象,因此会造成内存碎片。

复制(Copying):
这里写图片描述
该算法的提出是为了克服句柄的开销和解决堆碎片的垃圾回收。它开始时把堆分成 一个对象 面和多个空闲面, 程序从对象面为对象分配空间,当对象满了,基于copying算法的垃圾 收集就从根集中扫描活动对象,并将每个 活动对象复制到空闲面(使得活动对象所占的内存之间没有空闲洞),这样空闲面变成了对象面,原来的对象面变成了空闲面,程序会在新的对象面中分配内存。一种典型的基于coping算法的垃圾回收是stop-and-copy算法,它将堆分成对象面和空闲区域面,在对象面与空闲区域面的切换过程中,程序暂停执行。

标记-整理(Mark-Compact):
这里写图片描述
此算法结合了“标记-清除”和“复制”两个算法的优点。也是分两阶段,第一阶段从根节点开始标记所有被引用对象,第二阶段遍历整个堆,把清除未标记对象并且把存活对象“压缩”到堆的其中一块,按顺序排放。此算法避免了“标记-清除”的碎片问题,同时也避免了“复制”算法的空间问题。

generation算法(Generational Collector)
这里写图片描述

在java中,可以作为GCRoot的对象包括以下几种:

  1. 虚拟机栈中引用的对象。
  2. 方法区中静态属性引用的对象。
  3. 方法区中常量引用的对象。
  4. 本地方法中JNI引用的对象。

基于以上,我们可以知道,如果当前对象到GCRoot中不可达时候,即会满足被垃圾回收的可能。
那么是不是这些对象就非死不可,也不一定,此时只能宣判它们存在于一种“缓刑”的阶段,要真正的宣告一个对象死亡。
至少要经历两次标记:
第一次:对象可达性分析之后,发现没有与GCRoots相连接,此时会被第一次标记并筛选。
第二次:对象没有覆盖finalize()方法,或者finalize()方法已经被虚拟机调用过,此时会被认定为没必要执行。

三、收集器

上述的两点讲解之后,我们大概明白了,哪些对象会被回收,以及回收的依据是什么,但回收的这个工作实现起来并不简单,首先它需要扫描所有的对象,鉴别谁能够被回收,其次在扫描期间需要 ”stop the world“ 对象能被冻结,不然你刚扫描,他的引用信息有变化,你就等于白做了。

GC(垃圾收集器)

新生代收集器使用的收集器:Serial、PraNew、Parallel Scavenge
老年代收集器使用的收集器:Serial Old、Parallel Old、CMS
这里写图片描述

Serial收集器(复制算法)

新生代单线程收集器,标记和清理都是单线程,优点是简单高效。

*Serial Old收集器(标记-整理算法)

老年代单线程收集器,Serial收集器的老年代版本。

ParNew收集器(停止-复制算法) 

新生代收集器,可以认为是Serial收集器的多线程版本,在多核CPU环境下有着比Serial更好的表现。

Parallel Scavenge收集器(停止-复制算法)

并行收集器,追求高吞吐量,高效利用CPU。吞吐量一般为99%, 吞吐量= 用户线程时间/(用户线程时间+GC线程时间)。适合后台应用等对交互相应要求不高的场景。

Parallel Old收集器(停止-复制算法)

Parallel Scavenge收集器的老年代版本,并行收集器,吞吐量优先

CMS(Concurrent Mark Sweep)收集器(标记-清理算法)

高并发、低停顿,追求最短GC回收停顿时间,cpu占用比较高,响应时间快,停顿时间短,多核cpu 追求高响应时间的选择

四、优缺点

垃圾收集器是内存回收的具体实现,不同的厂商提供的垃圾收集器有很大的差别,一般的垃圾收集器都会作用于不同的分代,需要搭配使用。以下是各种垃圾收集器的组合方式:
这里写图片描述

组合的优缺点
这里写图片描述

五、Java有了GC同样会出现内存泄露问题

1.静态集合类像HashMap、Vector等的使用最容易出现内存泄露,这些静态变量的生命周期和应用程序一致,所有的对象Object也不能被释放,因为他们也将一直被Vector等应用着。

Static Vector v = new Vector(); 
for (int i = 1; i<100; i++) 
{ 
    Object o = new Object(); 
    v.add(o); 
    o = null; 
}

在这个例子中,代码栈中存在Vector 对象的引用 v 和 Object 对象的引用 o 。在 For 循环中,我们不断的生成新的对象,然后将其添加到 Vector 对象中,之后将 o 引用置空。问题是当 o 引用被置空后,如果发生 GC,我们创建的 Object 对象是否能够被 GC 回收呢?答案是否定的。因为, GC 在跟踪代码栈中的引用时,会发现 v 引用,而继续往下跟踪,就会发现 v 引用指向的内存空间中又存在指向 Object 对象的引用。也就是说尽管o 引用已经被置空,但是 Object 对象仍然存在其他的引用,是可以被访问到的,所以 GC 无法将其释放掉。如果在此循环之后, Object 对象对程序已经没有任何作用,那么我们就认为此 Java 程序发生了内存泄漏。

2.各种连接,数据库连接,网络连接,IO连接等没有显示调用close关闭,不被GC回收导致内存泄露。

3.监听器的使用,在释放对象的同时没有相应删除监听器的时候也可能导致内存泄露。

参考文档:
深入理解 Java 垃圾回收机制
jvm优化—— 图解垃圾回收
调优总结(三)-基本垃圾回收算法

猜你喜欢

转载自blog.csdn.net/Allen202/article/details/82466348