算法效率衡量

时间频度

一个算法执行所耗费的时间,从理论上是不能算出来的,必须上机运行测试才能知道。但我们不可能也没有必要对每个算法都上机测试,只需知道哪个算法花费的时间多,哪个算法花费的时间少就可以了。并且一个算法花费的时间与算法中语句的执行次数成正比例,哪个算法中语句执行次数多,它花费时间就多。一个算法中的语句执行次数称为语句频度或时间频度。记为T(n)。

时间复杂度与“大O记法”

上面提到的时间频度T(n)中,n称为问题的规模,当n不断变化时,时间频度T(n)也会不断变化。但有时我们想知道它变化时呈现什么规律,为此我们引入时间复杂度的概念。一般情况下,算法中基本操作重复执行的次数是问题规模n的某个函数,用T(n)表示,如果存在一个整数函数g和实常数c>0,使得对于充分大的n总有T(n)<=c*g(n),就说函数g是T(n)函数的一个渐近函数(忽略常数),记为T(n)=O(g(n)),它称为算法的渐进时间复杂度,简称时间复杂度。这种用O( )来体现算法时间复杂度的记法,我们称之为大O表示法。

大O表示法实际就是去掉T(n)函数的最高阶项系数、低阶项和常数项,只保留最高阶项。如T(n)函数为5n3 + 3n + 5,使用大O表示法则时间复杂度为O(n3)。

如何理解“大O记法”

对于算法的效率衡量,最重要的是其数量级和趋势,这些是分析算法效率的主要部分。而计量算法基本操作数量的规模函数中那些常量因子可以忽略不计。例如,可以认为3n2和100n2属于同一个量级,如果两个算法处理同样规模实例的代价分别为这两个函数,就认为它们的效率“差不多”,都为n2级。

时间复杂度的分类

时间复杂度根据操作的多少分为如下三种:

  • 最优时间复杂度:算法完成工作最少需要多少基本操作
  • 最坏时间复杂度:算法完成工作最多需要多少基本操作
  • 平均时间复杂度:算法完成工作平均需要多少基本操作
    对于最优时间复杂度,其价值不大,因为它没有提供什么有用信息,其反映的只是最乐观最理想的情况,没有参考价值。

对于最坏时间复杂度,提供了一种保证,表明算法在此种程度的基本操作中一定能完成工作。

对于平均时间复杂度,是对算法的一个全面评价,因此它完整全面的反映了这个算法的性质。但另一方面,这种衡量并没有保证,不是每个计算都能在这个基本操作内完成。而且,对于平均情况的计算,也会因为应用算法的实例分布可能并不均匀而难以计算。

因此,我们主要关注算法的最坏情况,亦即最坏时间复杂度。

时间复杂度的几条基本计算规则

基本操作,即只有常数项,认为其时间复杂度为O(1),
顺序结构,时间复杂度按加法进行计算
循环结构,时间复杂度按乘法进行计算
分支结构,时间复杂度取最大值
判断一个算法的效率时,往往只需要关注操作数量的最高次项,其它次要项和常数项可以忽略
在没有特殊说明时,我们所分析的算法的时间复杂度都是指最坏时间复杂度

空间复杂度

  1. 空间复杂度的概念
    类似于时间复杂度的讨论,一个算法的空间复杂度S(n)定义为该算法所耗费的存储空间,它也是问题规模n的函数。渐近空间复杂度也常常简称为空间复杂度。空间复杂度(SpaceComplexity)是对一个算法在运行过程中临时占用存储空间大小的量度。
  2. 空间复杂度和时间复杂度的关系
    对于一个算法,其时间复杂度和空间复杂度往往是相互影响的。当追求一个较好的时间复杂度时,可能会使空间复杂度的性能变差,即可能导致占用较多的存储空间;反之,当追求一个较好的空间复杂度时,可能会使时间复杂度的性能变差,即可能导致占用较长的运行时间。大部分时间我们在完成一个程序时采用空间换时间的策略
    算法的时间复杂度和空间复杂度合称为算法的复杂度。

猜你喜欢

转载自blog.csdn.net/Mr_w_ang/article/details/84679633