mycat实战之理论

一、了解背景知识(摘自mycat官网)

(1)OLTP 和 OLAP

在互联网时代,海量数据的存储与访问成为系统设计与使用的瓶颈问题,对于海量数据处理,按照使用场
景,主要分为两种类型:联机事务处理(OLTP)和联机分析处理(OLAP)。
联机事务处理(OLTP)也称为面向交易的处理系统,其基本特征是原始数据可以立即传送到计算中心进行处
理,并在很短的时间内给出处理结果。
联机分析处理(OLAP)是指通过多维的方式对数据进行分析、查询和报表,可以同数据挖掘工具、统计分析
工具配合使用,增强决策分析功能。对于两者的主要区别可以用下表来说明:


(2)、关系型数据库和 NoSQL 数据库

针对上面两类系统有多种技术实现方案,存储部分的数据库主要分为两大类:关系型数据库与 NoSQL 数据
库。
关系型数据库,是建立在关系模型基础上的数据库,其借助于集合代数等数学概念和方法来处理数据库中的
数据。主流的 oracle、DB2、MS SQL Server 和 mysql 都属于这类传统数据库。
15
NoSQL 数据库,全称为 Not Only SQL,意思就是适用关系型数据库的时候就使用关系型数据库,不适用的
时候也没有必要非使用关系型数据库不可,可以考虑使用更加合适的数据存储。主要分为临时性键值存储
(memcached、Redis)、永久性键值存储(ROMA、Redis)、面向文档的数据库(MongoDB、
CouchDB)、面向列的数据库(Cassandra、HBase),每种 NoSQL 都有其特有的使用场景及优点。
Oracle,mysql 等传统的关系数据库非常成熟并且已大规模商用,为什么还要用 NoSQL 数据库呢?主要是
由于随着互联网发展,数据量越来越大,对性能要求越来越高,传统数据库存在着先天性的缺陷,即单机(单
库)性能瓶颈,并且扩展困难。这样既有单机单库瓶颈,却又扩展困难,自然无法满足日益增长的海量数据存储
及其性能要求,所以才会出现了各种不同的 NoSQL 产品,NoSQL 根本性的优势在于在云计算时代,简单、易于
大规模分布式扩展,并且读写性能非常高。

优缺点:

(3)、 垂直切分
相对于垂直拆分,水平拆分不是将表做分类,而是按照某个字段的某种规则来分散到多个库之中,每个表中
包含一部分数据。简单来说,我们可以将数据的水平切分理解为是按照数据行的切分,就是将表中的某些行切分
到一个数据库,而另外的某些行又切分到其他的数据库中,如图:

系统被切分成了,用户,订单交易,支付几个模块。
一个架构设计较好的应用系统,其总体功能肯定是由很多个功能模块所组成的,而每一个功能模块所需要的
数据对应到数据库中就是一个或者多个表。而在架构设计中,各个功能模块相互之间的交互点越统一越少,系统
的耦合度就越低,系统各个模块的维护性以及扩展性也就越好。这样的系统,实现数据的垂直切分也就越容易。
但是往往系统之有些表难以做到完全的独立,存在这扩库 join 的情况,对于这类的表,就需要去做平
衡,是数据库让步业务,共用一个数据源,还是分成多个库,业务之间通过接口来做调用。在系统初期,数据量
比较少,或者资源有限的情况下,会选择共用数据源,但是当数据发展到了一定的规模,负载很大的情况,就需
要必须去做分割。
一般来讲业务存在着复杂 join 的场景是难以切分的,往往业务独立的易于切分。如何切分,切分到何种
程度是考验技术架构的一个难题。
下面来分析下垂直切分的优缺点:

优点:

  • 拆分后业务清晰,拆分规则明确;
  • 系统之间整合或扩展容易;
  • 数据维护简单

缺点:

  • 部分业务表无法 join,只能通过接口方式解决,提高了系统复杂度;
  • 受每种业务不同的限制存在单库性能瓶颈,不易数据扩展跟性能提高;
  • 事务处理复杂。

由于垂直切分是按照业务的分类将表分散到不同的库,所以有些业务表会过于庞大,存在单库读写与存储瓶
颈,所以就需要水平拆分来做解决

(3)、 水平切分
 

相对于垂直拆分,水平拆分不是将表做分类,而是按照某个字段的某种规则来分散到多个库之中,每个表中
包含一部分数据。简单来说,我们可以将数据的水平切分理解为是按照数据行的切分,就是将表中的某些行切分
到一个数据库,而另外的某些行又切分到其他的数据库中,如图

拆分数据就需要定义分片规则。关系型数据库是行列的二维模型,拆分的第一原则是找到拆分维度。比如:
从会员的角度来分析,商户订单交易类系统中查询会员某天某月某个订单,那么就需要按照会员结合日期来拆
分,不同的数据按照会员 ID 做分组,这样所有的数据查询 join 都会在单库内解决;如果从商户的角度来讲,要查
询某个商家某天所有的订单数,就需要按照商户 ID 做拆分;但是如果系统既想按会员拆分,又想按商家数据,则
会有一定的困难。如何找到合适的分片规则需要综合考虑衡量。
几种典型的分片规则包括:

  • 按照用户 ID 求模,将数据分散到不同的数据库,具有相同数据用户的数据都被分散到一个库中;
  • 按照日期,将不同月甚至日的数据分散到不同的库中;
  • 按照某个特定的字段求摸,或者根据特定范围段分散到不同的库中。

如图,切分原则都是根据业务找到适合的切分规则分散到不同的库,下面用用户 ID 求模举例

既然数据做了拆分有优点也就优缺点

优点:

  • 拆分规则抽象好,join 操作基本可以数据库做;
  • 不存在单库大数据,高并发的性能瓶颈;
  •  应用端改造较少;
  •  提高了系统的稳定性跟负载能力。

缺点:

  • 拆分规则难以抽象;
  • 分片事务一致性难以解决;
  • 数据多次扩展难度跟维护量极大;
  • 跨库 join 性能较差。

前面讲了垂直切分跟水平切分的不同跟优缺点,会发现每种切分方式都有缺点,但共同的特点缺点有:

  •  引入分布式事务的问题;
  •  跨节点 Join 的问题;
  •  跨节点合并排序分页问题;
  •  多数据源管理问题。

针对数据源管理,目前主要有两种思路:
A. 客户端模式,在每个应用程序模块中配置管理自己需要的一个(或者多个)数据源,直接访问各个数据
库,在模块内完成数据的整合;
B. 通过中间代理层来统一管理所有的数据源,后端数据库集群对前端应用程序透明;
可能 90%以上的人在面对上面这两种解决思路的时候都会倾向于选择第二种,尤其是系统不断变得庞大复杂
的时候。确实,这是一个非常正确的选择,虽然短期内需要付出的成本可能会相对更大一些,但是对整个系统的
扩展性来说,是非常有帮助的。
Mycat 通过数据切分解决传统数据库的缺陷,又有了 NoSQL 易于扩展的优点。通过中间代理层规避了多数
据源的处理问题,对应用完全透明,同时对数据切分后存在的问题,也做了解决方案。下面章节就分析,mycat
的由来及如何进行数据切分问题。
由于数据切分后数据 Join 的难度在此也分享一下数据切分的经验:
第一原则:能不切分尽量不要切分。
第二原则:如果要切分一定要选择合适的切分规则,提前规划好。
第三原则:数据切分尽量通过数据冗余或表分组(Table Group)来降低跨库 Join 的可能。
第四原则:由于数据库中间件对数据 Join 实现的优劣难以把握,而且实现高性能难度极大,业务读取尽量
少使用多表 Join。
 

二、了解mycat分片规则(摘自mycat官网)

1 、分片枚举
通过在配置文件中配置可能的枚举 id,自己配置分片,本规则适用于特定的场景,比如有些业务需要按照省
份或区县来做保存,而全国省份区县固定的,这类业务使用本条规则,配置如下:

<tableRule name="sharding-by-intfile">
<rule>
<columns>user_id</columns>
<algorithm>hash-int</algorithm>
</rule>
</tableRule>
<function name="hash-int" class="io.mycat.route.function.PartitionByFileMap">
<property name="mapFile">partition-hash-int.txt</property>
<property name="type">0</property>
<property name="defaultNode">0</property>
</function>


partition-hash-int.txt 配置:

10000=0
10010=1
DEFAULT_NODE=1


上面 columns 标识将要分片的表字段,algorithm 分片函数,
其中分片函数配置中,mapFile 标识配置文件名称,type 默认值为 0,0 表示 Integer,非零表示 String,
所有的节点配置都是从 0 开始,及 0 代表节点 1
/**
* defaultNode 默认节点:小于 0 表示不设置默认节点,大于等于 0 表示设置默认节点
* 默认节点的作用:枚举分片时,如果碰到不识别的枚举值,就让它路由到默认节点
* 如果不配置默认节点(defaultNode 值小于 0 表示不配置默认节点),碰到
* 不识别的枚举值就会报错,
* like this:can’t find datanode for sharding column:column_name val:ffffffff */


2 固定分片 hash 算法
本条规则类似于十进制的求模运算,区别在于是二进制的操作,是取 id 的二进制低 10 位,即 id 二进制
&1111111111。
此算法的优点在于如果按照 10 进制取模运算,在连续插入 1-10 时候 1-10 会被分到 1-10 个分片,增
大了插入的事务控制难度,而此算法根据二进制则可能会分到连续的分片,减少插入事务事务控制难度。

<tableRule name="rule1">
<rule>
<columns>user_id</columns>
<algorithm>func1</algorithm>
</rule>
</tableRule>
<function name="func1" class="io.mycat.route.function.PartitionByLong">
<property name="partitionCount">2,1</property>
<property name="partitionLength">256,512</property>
</function>


配置说明:
上面 columns 标识将要分片的表字段,algorithm 分片函数,
partitionCount 分片个数列表,partitionLength 分片范围列表
分区长度:默认为最大 2^n=1024 ,即最大支持 1024 分区
约束 :
count,length 两个数组的长度必须是一致的。
1024 = sum((count[i]*length[i])). count 和 length 两个向量的点积恒等于 1024
用法例子:
本例的分区策略:希望将数据水平分成 3 份,前两份各占 25%,第三份占 50%。(故本例非均匀分区)
// |<———————1024———————————>|
122
// |<—-256—>|<—-256—>|<———-512————->|
// | partition0 | partition1 | partition2 |
// | 共 2 份,故 count[0]=2 | 共 1 份,故 count[1]=1 |
int[] count = new int[] { 2, 1 };
int[] length = new int[] { 256, 512 };
PartitionUtil pu = new PartitionUtil(count, length);

// 下面代码演示分别以 offerId 字段或 memberId 字段根据上述分区策略拆分的分配结果
int DEFAULT_STR_HEAD_LEN = 8; // cobar 默认会配置为此值
long offerId = 12345;
String memberId = "qiushuo";
// 若根据 offerId 分配,partNo1 将等于 0,即按照上述分区策略,offerId 为 12345 时将会被分配
到 partition0 中
int partNo1 = pu.partition(offerId);
// 若根据 memberId 分配,partNo2 将等于 2,即按照上述分区策略,memberId 为 qiushuo 时将会被
分到 partition2 中
int partNo2 = pu.partition(memberId, 0, DEFAULT_STR_HEAD_LEN);


如果需要平均分配设置:平均分为 4 分片,partitionCount*partitionLength=1024

<function name="func1" class="io.mycat.route.function.PartitionByLong">
<property name="partitionCount">4</property>
<property name="partitionLength">256</property>
</function>


3 范围约定
此分片适用于,提前规划好分片字段某个范围属于哪个分片,
start <= range <= end.

range start-end ,data node index
K=1000,M=10000.

<tableRule name="auto-sharding-long">
<rule>
<columns>user_id</columns>
<algorithm>rang-long</algorithm>
</rule>
</tableRule>
<function name="rang-long" class="io.mycat.route.function.AutoPartitionByLong">
<property name="mapFile">autopartition-long.txt</property>
<property name="defaultNode">0</property>
</function>


配置说明:
上面 columns 标识将要分片的表字段,algorithm 分片函数,
rang-long 函数中 mapFile 代表配置文件路径
defaultNode 超过范围后的默认节点。
所有的节点配置都是从 0 开始,及 0 代表节点 1,此配置非常简单,即预先制定可能的 id 范围到某个分片
0-500M=0
500M-1000M=1
1000M-1500M=2

0-10000000=0
10000001-20000000=1
4 取模
此规则为对分片字段求摸运算。

<tableRule name="mod-long">
<rule>
<columns>user_id</columns>
<algorithm>mod-long</algorithm>
</rule>
</tableRule>
<function name="mod-long" class="io.mycat.route.function.PartitionByMod">
<!-- how many data nodes -->
<property name="count">3</property>
</function>


配置说明:
上面 columns 标识将要分片的表字段,algorithm 分片函数,
此种配置非常明确即根据 id 进行十进制求模预算,相比固定分片 hash,此种在批量插入时可能存在批量插入单
事务插入多数据分片,增大事务一致性难度。
5 按日期(天)分片
此规则为按天分片。

<tableRule name="sharding-by-date">
<rule>
<columns>create_time</columns>
<algorithm>sharding-by-date</algorithm>
</rule>
</tableRule>
<function name="sharding-by-date" class="io.mycat.route.function.PartitionByDate">
<property name="dateFormat">yyyy-MM-dd</property>
<property name="sBeginDate">2014-01-01</property>
<property name="sEndDate">2014-01-02</property>
<property name="sPartionDay">10</property>
</function>


配置说明:
columns :标识将要分片的表字段
algorithm :分片函数
dateFormat :日期格式
sBeginDate :开始日期
sEndDate:结束日期
sPartionDay :分区天数,即默认从开始日期算起,分隔 10 天一个分区
如果配置了 sEndDate 则代表数据达到了这个日期的分片后后循环从开始分片插入。
Assert.assertEquals(true, 0 == partition.calculate(“2014-01-01”));
Assert.assertEquals(true, 0 == partition.calculate(“2014-01-10”));
Assert.assertEquals(true, 1 == partition.calculate(“2014-01-11”));
Assert.assertEquals(true, 12 == partition.calculate(“2014-05-01”));
6 取模范围约束
此种规则是取模运算与范围约束的结合,主要为了后续数据迁移做准备,即可以自主决定取模后数据的节点
分布。

<tableRule name="sharding-by-pattern">
<rule>
<columns>user_id</columns>
<algorithm>sharding-by-pattern</algorithm>
</rule>
</tableRule>
<function name="sharding-by-pattern"
class="io.mycat.route.function.PartitionByPattern">
<property name="patternValue">256</property>
<property name="defaultNode">2</property>
<property name="mapFile">partition-pattern.txt</property>
</function>


partition-pattern.txt

# id partition range start-end ,data node index
###### first host configuration
1-32=0
33-64=1
65-96=2
125
97-128=3
######## second host configuration
129-160=4
161-192=5
193-224=6
225-256=7
0-0=7


配置说明:
上面 columns 标识将要分片的表字段,algorithm 分片函数,patternValue 即求模基数,defaoultNode
默认节点,如果配置了默认,则不会按照求模运算
mapFile 配置文件路径
配置文件中,1-32 即代表 id%256 后分布的范围,如果在 1-32 则在分区 1,其他类推,如果 id 非数据,则
会分配在 defaoultNode 默认节点
String idVal = “0”;
Assert.assertEquals(true, 7 == autoPartition.calculate(idVal));
idVal = “45a”;
Assert.assertEquals(true, 2 == autoPartition.calculate(idVal));
7 截取数字做 hash 求模范围约束
此种规则类似于取模范围约束,此规则支持数据符号字母取模。

<tableRule name="sharding-by-prefixpattern">
<rule>
<columns>user_id</columns>
<algorithm>sharding-by-prefixpattern</algorithm>
</rule>
</tableRule>
<function name="sharding-by-pattern"
class="io.mycat.route.function.PartitionByPrefixPattern">
<property name="patternValue">256</property>
<property name="prefixLength">5</property>
<property name="mapFile">partition-pattern.txt</property>
</function>


partition-pattern.txt

# range start-end ,data node index
# ASCII
# 8-57=0-9 阿拉伯数字
# 64、65-90=@、A-Z
126
# 97-122=a-z
###### first host configuration
1-4=0
5-8=1
9-12=2
13-16=3
###### second host configuration
17-20=4
21-24=5
25-28=6
29-32=7
0-0=7


配置说明:
上面 columns 标识将要分片的表字段,algorithm 分片函数,patternValue 即求模基数,prefixLength
ASCII 截取的位数
mapFile 配置文件路径
配置文件中,1-32 即代表 id%256 后分布的范围,如果在 1-32 则在分区 1,其他类推
此种方式类似方式 6 只不过采取的是将列种获取前 prefixLength 位列所有 ASCII 码的和进行求模
sum%patternValue ,获取的值,在范围内的分片数,
String idVal=“gf89f9a”;
Assert.assertEquals(true, 0==autoPartition.calculate(idVal));
idVal=“8df99a”;
Assert.assertEquals(true, 4==autoPartition.calculate(idVal));
idVal=“8dhdf99a”;
Assert.assertEquals(true, 3==autoPartition.calculate(idVal));


8 应用指定
此规则是在运行阶段有应用自主决定路由到那个分片。

<tableRule name="sharding-by-substring">
<rule>
<columns>user_id</columns>
<algorithm>sharding-by-substring</algorithm>
</rule>
</tableRule>
<function name="sharding-by-substring"
class="io.mycat.route.function.PartitionDirectBySubString">
<property name="startIndex">0</property><!-- zero-based -->
<property name="size">2</property>
<property name="partitionCount">8</property>
<property name="defaultPartition">0</property>
</function>


配置说明:
上面 columns 标识将要分片的表字段,algorithm 分片函数
此方法为直接根据字符子串(必须是数字)计算分区号(由应用传递参数,显式指定分区号)。
例如 id=05-100000002
在此配置中代表根据 id 中从 startIndex=0,开始,截取 siz=2 位数字即 05,05 就是获取的分区,如果没传
默认分配到 defaultPartition
9 截取数字 hash 解析
此规则是截取字符串中的 int 数值 hash 分片。

<tableRule name="sharding-by-stringhash">
<rule>
<columns>user_id</columns>
<algorithm>sharding-by-stringhash</algorithm>
</rule>
</tableRule>
<function name="sharding-by-stringhash"
class="io.mycat.route.function.PartitionByString">
<property name="partitionLength">512</property><!-- zero-based -->
<property name="partitionCount">2</property>
<property name="hashSlice">0:2</property>
</function>


配置说明:
上面 columns 标识将要分片的表字段,algorithm 分片函数
函数中 partitionLength 代表字符串 hash 求模基数,
partitionCount 分区数,
hashSlice hash 预算位,即根据子字符串中 int 值 hash 运算
hashSlice : 0 means str.length(), -1 means str.length()-1
/**
* “2” -> (0,2) * “1:2” -> (1,2) * “1:” -> (1,0) * “-1:” -> (-1,0)
128
* “:-1” -> (0,-1) * “:” -> (0,0) */
例子:

String idVal=null;
rule.setPartitionLength("512");
rule.setPartitionCount("2");
rule.init();
rule.setHashSlice("0:2");
// idVal = "0";
// Assert.assertEquals(true, 0 == rule.calculate(idVal));
// idVal = "45a";
// Assert.assertEquals(true, 1 == rule.calculate(idVal));
//last 4
rule = new PartitionByString();
rule.setPartitionLength("512");
rule.setPartitionCount("2");
rule.init();
//last 4 characters
rule.setHashSlice("-4:0");
idVal = "aaaabbb0000";
Assert.assertEquals(true, 0 == rule.calculate(idVal));
idVal = "aaaabbb2359";
Assert.assertEquals(true, 0 == rule.calculate(idVal));


10 一致性 hash (重点)

一致性 hash 预算有效解决了分布式数据的扩容问题。

<tableRule name="sharding-by-murmur">
<rule>
<columns>user_id</columns>
<algorithm>murmur</algorithm>
</rule>
</tableRule>
<function name="murmur" class="io.mycat.route.function.PartitionByMurmurHash">
<property name="seed">0</property><!-- 默认是 0-->
<property name="count">2</property><!-- 要分片的数据库节点数量,必须指定,否则没法分片-->
<property name="virtualBucketTimes">160</property><!-- 一个实际的数据库节点被映射为这么多虚拟
节点,默认是 160 倍,也就是虚拟节点数是物理节点数的 160 倍-->
<!--
<property name="weightMapFile">weightMapFile</property>
节点的权重,没有指定权重的节点默认是 1。以 properties 文件的格式填写,以从 0 开始到 count-1 的整数值也就
是节点索引为 key,以节点权重值为值。所有权重值必须是正整数,否则以 1 代替 -->
<!--
<property name="bucketMapPath">/etc/mycat/bucketMapPath</property>
用于测试时观察各物理节点与虚拟节点的分布情况,如果指定了这个属性,会把虚拟节点的 murmur hash 值与物理节
点的映射按行输出到这个文件,没有默认值,如果不指定,就不会输出任何东西 -->
</function>


11 按单月小时拆分
此规则是单月内按照小时拆分,最小粒度是小时,可以一天最多 24 个分片,最少 1 个分片,一个月完后下月
从头开始循环。
每个月月尾,需要手工清理数据。

<tableRule name="sharding-by-hour">
<rule>
<columns>create_time</columns>
<algorithm>sharding-by-hour</algorithm>
</rule>
</tableRule>
<function name="sharding-by-hour" class="io.mycat.route.function.LatestMonthPartion">
<property name="splitOneDay">24</property>
</function>


配置说明:
columns: 拆分字段,字符串类型(yyyymmddHH)
splitOneDay : 一天切分的分片数

LatestMonthPartion partion = new LatestMonthPartion();
partion.setSplitOneDay(24);
Integer val = partion.calculate("2015020100");
assertTrue(val == 0);
val = partion.calculate("2015020216");
assertTrue(val == 40);
val = partion.calculate("2015022823");
assertTrue(val == 27 * 24 + 23);
Integer[] span = partion.calculateRange("2015020100", "2015022823");
assertTrue(span.length == 27 * 24 + 23 + 1);
assertTrue(span[0] == 0 && span[span.length - 1] == 27 * 24 + 23);
span = partion.calculateRange("2015020100", "2015020123");
assertTrue(span.length == 24);
assertTrue(span[0] == 0 && span[span.length - 1] == 23);


12 范围求模分片
先进行范围分片计算出分片组,组内再求模
优点可以避免扩容时的数据迁移,又可以一定程度上避免范围分片的热点问题
综合了范围分片和求模分片的优点,分片组内使用求模可以保证组内数据比较均匀,分片组之间是范围分片可以
兼顾范围查询。
最好事先规划好分片的数量,数据扩容时按分片组扩容,则原有分片组的数据不需要迁移。由于分片组内数据比
较均匀,所以分片组内可以避免热点数据问题。

<tableRule name="auto-sharding-rang-mod">
<rule>
<columns>id</columns>
<algorithm>rang-mod</algorithm>
</rule>
</tableRule>
<function name="rang-mod"
class="io.mycat.route.function.PartitionByRangeMod">
<property name="mapFile">partition-range-mod.txt</property>
<property name="defaultNode">21</property>
</function>


配置说明:
上面 columns 标识将要分片的表字段,algorithm 分片函数,
rang-mod 函数中 mapFile 代表配置文件路径
defaultNode 超过范围后的默认节点顺序号,节点从 0 开始。
partition-range-mod.txt
range start-end ,data node group size
以下配置一个范围代表一个分片组,=号后面的数字代表该分片组所拥有的分片的数量。
0-200M=5 //代表有 5 个分片节点
200M1-400M=1
400M1-600M=4
600M1-800M=4
800M1-1000M=6


13 日期范围 hash 分片
思想与范围求模一致,当由于日期在取模会有数据集中问题,所以改成 hash 方法。
先根据日期分组,再根据时间 hash 使得短期内数据分布的更均匀
优点可以避免扩容时的数据迁移,又可以一定程度上避免范围分片的热点问题
要求日期格式尽量精确些,不然达不到局部均匀的目的

<tableRule name="rangeDateHash">
<rule>
<columns>col_date</columns>
<algorithm>range-date-hash</algorithm>
</rule>
</tableRule>
<function name="range-date-hash"
class="io.mycat.route.function.PartitionByRangeDateHash">
<property name="sBeginDate">2014-01-01 00:00:00</property>
<property name="sPartionDay">3</property>
<property name="dateFormat">yyyy-MM-dd HH:mm:ss</property>
<property name="groupPartionSize">6</property>
</function>


sPartionDay 代表多少天分一个分片
groupPartionSize 代表分片组的大小


14 冷热数据分片
根据日期查询日志数据 冷热数据分布 ,最近 n 个月的到实时交易库查询,超过 n 个月的按照 m 天分片。

<tableRule name="sharding-by-date">
<rule>
<columns>create_time</columns>
<algorithm>sharding-by-hotdate</algorithm>
</rule>
</tableRule>
<function name="sharding-by-hotdate" class="io.mycat.route.function.PartitionByHotDate">
<property name="dateFormat">yyyy-MM-dd</property>
<property name="sLastDay">10</property>
<property name="sPartionDay">30</property>
</function>


15 自然月分片
按月份列分区 ,每个自然月一个分片,格式 between 操作解析的范例。

<tableRule name="sharding-by-month">
<rule>
<columns>create_time</columns>
<algorithm>sharding-by-month</algorithm>
</rule>
</tableRule>
<function name="sharding-by-month" class="io.mycat.route.function.PartitionByMonth">
<property name="dateFormat">yyyy-MM-dd</property>
<property name="sBeginDate">2014-01-01</property>
</function>


配置说明:
columns: 分片字段,字符串类型
dateFormat : 日期字符串格式,默认为 yyyy-MM-dd
sBeginDate : 开始日期,无默认值
sEndDate:结束日期,无默认值
节点从 0 开始分片
使用场景:
场景 1:
默认设置;节点数量必须是 12 个,从 1 月~12 月

  •  "2014-01-01" = 节点 0
  •  "2013-01-01" = 节点 0
  •  "2018-05-01" = 节点 4
  •  "2019-12-01" = 节点 11

场景 2:
sBeginDate = "2017-01-01" 该配置表示"2017-01 月"是第 0 个节点,从该时间按月递增,无最大节点
133

  •  "2014-01-01" = 未找到节点
  •  "2017-01-01" = 节点 0
  •  "2017-12-01" = 节点 11
  •  "2018-01-01" = 节点 12
  •  "2018-12-01" = 节点 23

场景 3:
sBeginDate = "2015-01-01"sEndDate = "2015-12-01" 该配置可看成与场景 1 一致;场景 1 的配置效率更高

  •  "2014-01-01" = 节点 0
  •  "2014-02-01" = 节点 1
  •  "2015-02-01" = 节点 1
  •  "2017-01-01" = 节点 0
  •  "2017-12-01" = 节点 11
  •  "2018-12-01" = 节点 11

该配置可看成是与场景 1 一致
场景 4:
sBeginDate = "2015-01-01"sEndDate = "2015-03-01" 该配置标识只有 3 个节点;很难与月份对应上;平均分散到 3 个节点上
自然月分片算法功能测试用例:

PartitionByMonth partition = new PartitionByMonth();
partition.setDateFormat("yyyy-MM-dd");
partition.setsBeginDate("2014-01-01");
partition.init();
Assert.assertEquals(true, 0 == partition.calculate("2014-01-01"));
Assert.assertEquals(true, 0 == partition.calculate("2014-01-10"));
Assert.assertEquals(true, 0 == partition.calculate("2014-01-31"));
Assert.assertEquals(true, 1 == partition.calculate("2014-02-01"));
Assert.assertEquals(true, 1 == partition.calculate("2014-02-28"));
Assert.assertEquals(true, 2 == partition.calculate("2014-03-1"));
Assert.assertEquals(true, 11 == partition.calculate("2014-12-31"));
Assert.assertEquals(true, 12 == partition.calculate("2015-01-31"));
Assert.assertEquals(true, 23 == partition.calculate("2015-12-31"));


16 有状态分片算法
有状态分片算法与之前的分片算法不同,它是为(在线)数据自动迁移而设计的. 数据自动迁移分片算法需要满足一致性哈希的要求,尤其是单调性。
直至 2018 年 7 月 24 日为止,现支持有状态算法的分片策略只有 crc32slot 欢迎大家提供更多有状态分片算法. 一个有状态分片算法在使用过程中暂时存在两个操作
一种是初始化,使用 mycat 创建配置带有有状态分片算法的 table 时(推介)或者第一次配置有状态分片算法的
table 并启动 mycat 时,有状态分片算法会根据表的 dataNode 的数量划分分片范围并生成 ruledata 下的文件, 这个分片范围规则就是’状态’,一个表对应一个状态,对应一个有状态分片算法实例,以及对应一个满足以下命
名规则的文件:
算法名字_schema 名字_table 名字.properties
文件里内容一般具有以下特征
8=91016-102399
7=79639-91015
6=68262-79638
5=56885-68261
4=45508-56884
3=34131-45507
2=22754-34130
1=11377-22753
0=0-11376

行数就是 table 的分片节点数量,每行的’数字-数字’就是分片算法生成的范围,这个范围与具体算法实现有关,一
个分片节点可能存在多个范围,这些范围以逗号,分隔.一般来说,不要手动更改这个文件,应该使用算法生成范围,而
且需要注意的是,物理库上的数据的分片字段的值一定要落在对应范围里. 一种是添加操作,即数据扩容。
添加节点,有状态分片算法根据节点的变化,重新分配范围规则,之后执行数据自动迁移任务.


17 crc32slot 分片算法(重点)
crc32solt 是有状态分片算法的实现之一,是一致性哈希,具体参考第六章 数据自动迁移方案设计
crc32(key)%102400=slot
slot 按照范围均匀分布在 dataNode 上,针对每张表进行实例化,通过一个文件记录 slot 和节点
映射关系,迁移过程中通过 zk 协调
其中需要在分片表中增加 slot 字段,用以避免迁移时重新计算,只需要迁移对应 slot 数据即可
分片最大个数为 102400 个,短期内应该够用,每分片一千万,总共可以支持一万亿数据
值得注意的是 crc32 算法对字段计算的结果与字符集有关
crc32 会根据用户指定的分片字段,即图中的 id,算出 slot 的值

<tableRule name="crc32slot">
<rule>
<columns>id</columns>
<algorithm>crc32slot</algorithm>
</rule>
</tableRule>


然后根据 slot 找到对应的节点

public Integer calculate(String columnValue) {
if (ruleName == null)
throw new RuntimeException();
PureJavaCrc32 crc32 = new PureJavaCrc32();
byte[] bytes = columnValue.getBytes(DEFAULT_CHARSET);
crc32.update(bytes, 0, bytes.length);
long x = crc32.getValue();
int slot = (int) (x % DEFAULT_SLOTS_NUM);
this.slot = slot;
return rangeMap2[slot];
}


因为算法中的_slot 字段字段被算法占用,所以使用 crc32slot 的 tableRule 中的 rule 的 columns 分片字段
不能为_slot.。_slot 是为了数据自动迁移过程中不需要重复根据分片字段计算_slot 而在数据库存储层面做的数
据冗余。考虑数据冗余带来的数据存储空间与传输层面的开销与重复计算_slot 的时间开销,冗余 crc32 计算
结果是值得的。如果有特殊原因可以提供一个选项给用户选择是否创建_slot 字段.此为后续 mycat 开发的一个
任务。
配置说明:

<table name="travelrecord" dataNode="dn1,dn2" rule="crc32slot" />


使用 mycat 配置完表后使用 mycat 创建表。
需要注意的是,在 rule.xml 中 crc32slot 的信息请保持如下配置,不需要配置 count

<function name="crc32slot"
class="io.mycat.route.function.PartitionByCRC32PreSlot">
</function>
USE TESTDB;
CREATE TABLE `travelrecord` (
id xxxx
xxxxxxx
) ENGINE=INNODB DEFAULT CHARSET=utf8;

猜你喜欢

转载自blog.csdn.net/huangpeigui/article/details/84846668