关于storm中某一段时间内topN的计算入门

转载地址:https://www.cnblogs.com/zguood/p/4528195.html

刚刚接触storm 对于滑动窗口的topN复杂模型有一些不理解,通过阅读其他的博客发现有两篇关于topN的非滑动窗口的介绍。然后转载过来。

下面是第一种:

Storm的另一种常见模式是对流式数据进行所谓“streaming top N”的计算,它的特点是持续的在内存中按照某个统计指标(如出现次数)计算TOP N,然后每隔一定时间间隔输出实时计算后的TOP N结果。

流式数据的TOP N计算的应用场景很多,例如计算twitter上最近一段时间内的热门话题、热门点击图片等等。

下面结合Storm-Starter中的例子,介绍一种可以很容易进行扩展的实现方法:首先,在多台机器上并行的运行多个Bolt,每个Bolt负责一部分数据的TOP N计算,然后再有一个全局的Bolt来合并这些机器上计算出来的TOP N结果,合并后得到最终全局的TOP N结果。

该部分示例代码的入口是RollingTopWords类,用于计算文档中出现次数最多的N个单词。首先看一下这个Topology结构:

Topology构建的代码如下:

TopologyBuilder builder = new TopologyBuilder();
builder.setSpout("word", new TestWordSpout(), 5);
builder.setBolt("count", new RollingCountObjects(60, 10), 4).fieldsGrouping("word", new Fields("word"));
builder.setBolt("rank", new RankObjects(TOP_N), 4).fieldsGrouping("count", new Fields("obj"));
builder.setBolt("merge", new MergeObjects(TOP_N)).globalGrouping("rank");

(1)首先,TestWordSpout()是Topology的数据源Spout,持续随机生成单词发出去,产生数据流“word”,输出Fields是“word”,核心代码如下:

public void nextTuple() {
    Utils.sleep(100);
    final String[] words = new String[] {"nathan", "mike", "jackson", "golda", "bertels"};
    final Random rand = new Random();
    final String word = words[rand.nextInt(words.length)];
    _collector.emit(new Values(word));
}

public void declareOutputFields(OutputFieldsDeclarer declarer) {
    declarer.declare(new Fields("word"));
}

(2)接下来,“word”流入RollingCountObjects这个Bolt中进行word count计算,为了保证同一个word的数据被发送到同一个Bolt中进行处理,按照“word”字段进行field grouping;在RollingCountObjects中会计算各个word的出现次数,然后产生“count”流,输出“obj”和“count”两个Field,其中对于synchronized的线程锁我们也可以换成安全的容器,比如ConcurrentHashMap等组件。核心代码如下:

public void execute(Tuple tuple) {

    Object obj = tuple.getValue(0);
    int bucket = currentBucket(_numBuckets);
    synchronized(_objectCounts) {
        long[] curr = _objectCounts.get(obj);
        if(curr==null) {
            curr = new long[_numBuckets];
            _objectCounts.put(obj, curr);
        }
        curr[bucket]++;
        _collector.emit(new Values(obj, totalObjects(obj)));
        _collector.ack(tuple);
    }
}

public void declareOutputFields(OutputFieldsDeclarer declarer) {
    declarer.declare(new Fields("obj", "count"));
}

(3)然后,RankObjects这个Bolt按照“count”流的“obj”字段进行field grouping;在Bolt内维护TOP N个有序的单词,如果超过TOP N个单词,则将排在最后的单词踢掉,同时每个一定时间(2秒)产生“rank”流,输出“list”字段,输出TOP N计算结果到下一级数据流“merge”流,核心代码如下:

public void execute(Tuple tuple, BasicOutputCollector collector) {
    Object tag = tuple.getValue(0);
    Integer existingIndex = _find(tag);
    if (null != existingIndex) {
        _rankings.set(existingIndex, tuple.getValues());
    } else {
        _rankings.add(tuple.getValues());
    }
    Collections.sort(_rankings, new Comparator<List>() {
        public int compare(List o1, List o2) {
            return _compare(o1, o2);
        }
    });
    if (_rankings.size() > _count) {
        _rankings.remove(_count);
    }
    long currentTime = System.currentTimeMillis();
    if(_lastTime==null || currentTime >= _lastTime + 2000) {
        collector.emit(new Values(new ArrayList(_rankings)));
        _lastTime = currentTime;
    }
}

public void declareOutputFields(OutputFieldsDeclarer declarer) {
    declarer.declare(new Fields("list"));
}

(4)最后,MergeObjects这个Bolt按照“rank”流的进行全局的grouping,即所有上一级Bolt产生的“rank”流都流到这个“merge”流进行;MergeObjects的计算逻辑和RankObjects类似,只是将各个RankObjects的Bolt合并后计算得到最终全局的TOP N结果,核心代码如下:

public void execute(Tuple tuple, BasicOutputCollector collector) {
    List<List> merging = (List) tuple.getValue(0);
    for(List pair : merging) {
        Integer existingIndex = _find(pair.get(0));
        if (null != existingIndex) {
            _rankings.set(existingIndex, pair);
        } else {
            _rankings.add(pair);
        }

        Collections.sort(_rankings, new Comparator<List>() {
            public int compare(List o1, List o2) {
                return _compare(o1, o2);
            }
        });

        if (_rankings.size() > _count) {
            _rankings.subList(_count, _rankings.size()).clear();
        }
    }

    long currentTime = System.currentTimeMillis();
    if(_lastTime==null || currentTime >= _lastTime + 2000) {
        collector.emit(new Values(new ArrayList(_rankings)));
        LOG.info("Rankings: " + _rankings);
        _lastTime = currentTime;
    }
}

public void declareOutputFields(OutputFieldsDeclarer declarer) {
    declarer.declare(new Fields("list"));
}

另外,还有一种很聪明的方法,只在execute中插入数据而不emit,而在prepare中进行emit,创建线程根据时间进行监听。

package test.storm.topology;
import test.storm.bolt.WordCounter;
import test.storm.bolt.WordWriter;
import test.storm.spout.WordReader;
import backtype.storm.Config;
import backtype.storm.StormSubmitter;
import backtype.storm.generated.AlreadyAliveException;
import backtype.storm.generated.InvalidTopologyException;
import backtype.storm.topology.TopologyBuilder;
import backtype.storm.tuple.Fields;
public class WordTopN {
    public static void main(String[] args) throws AlreadyAliveException, InvalidTopologyException {
        if (args == null || args.length < 1) {  
            System.err.println("Usage: N");
            System.err.println("such as : 10");
            System.exit(-1);
        }
        TopologyBuilder builder = new TopologyBuilder();
        builder.setSpout("wordreader", new WordReader(), 2);
        builder.setBolt("wordcounter", new WordCounter(), 2).fieldsGrouping("wordreader", new Fields("word"));
        builder.setBolt("wordwriter", new WordWriter()).globalGrouping("wordcounter");
        Config conf = new Config();
        conf.put("N", args[0]);
        conf.setDebug(false);
        StormSubmitter.submitTopology("topN", conf, builder.createTopology());
    }
}

这里需要注意的几点是,第一个bolt的分组策略是fieldsGrouping,按照字段分组,这一点很重要,它能保证相同的word被分发到同一个bolt上,
像做wordcount、TopN之类的应用就要使用这种分组策略。
最后一个bolt的分组策略是globalGrouping,全局分组,tuple会被分配到一个bolt用来汇总。
为了提高并行度,spout和第一个bolt均设置并行度为2(我这里测试机器性能不是很高)。

package test.storm.spout;
import java.util.Map;
import java.util.Random;
import java.util.concurrent.atomic.AtomicInteger;
import backtype.storm.spout.SpoutOutputCollector;
import backtype.storm.task.TopologyContext;
import backtype.storm.topology.OutputFieldsDeclarer;
import backtype.storm.topology.base.BaseRichSpout;
import backtype.storm.tuple.Fields;
import backtype.storm.tuple.Values;
public class WordReader extends BaseRichSpout {
    private static final long serialVersionUID = 2197521792014017918L;
    private SpoutOutputCollector collector;
    private static AtomicInteger i = new AtomicInteger();
    private static String[] words = new String[] { \"a\", \"b\", \"c\", \"d\", \"e\", \"f\", \"g\", \"h\", \"i\", \"j\", \"k\", \"l\", \"m\",
            \"n\", \"o\", \"p\", \"q\", \"r\", \"s\", \"t\", \"u\", \"v\", \"w\", \"x\", \"y\", \"z\" };
    @Override
    public void open(Map conf, TopologyContext context, SpoutOutputCollector collector) {
        this.collector = collector;
    }
    @Override
    public void nextTuple() {
        if (i.intValue() < 100) {
            Random rand = new Random();
            String word = words[rand.nextInt(words.length)];
            collector.emit(new Values(word));
            i.incrementAndGet();
        }
    }
    @Override
    public void declareOutputFields(OutputFieldsDeclarer declarer) {
        declarer.declare(new Fields("word"));
    }
}

spout的作用是随机发送word,发送100次,由于并行度是2,将产生2个spout实例,所以这里的计数器使用了static的AtomicInteger来保证线程安全。

package test.storm.bolt;
import java.util.ArrayList;
import java.util.Collections;
import java.util.Comparator;
import java.util.HashMap;
import java.util.List;
import java.util.Map;
import java.util.Map.Entry;
import java.util.concurrent.ConcurrentHashMap;
import backtype.storm.task.OutputCollector;
import backtype.storm.task.TopologyContext;
import backtype.storm.topology.IRichBolt;
import backtype.storm.topology.OutputFieldsDeclarer;
import backtype.storm.tuple.Fields;
import backtype.storm.tuple.Tuple;
import backtype.storm.tuple.Values;
public class WordCounter implements IRichBolt {
    private static final long serialVersionUID = 5683648523524179434L;
    private static Map<String, Integer> counters = new ConcurrentHashMap<String, Integer>();
    private volatile boolean edit = true;
    @Override
    public void prepare(final Map stormConf, TopologyContext context, final OutputCollector collector) {
        new Thread(new Runnable() {
            @Override
            public void run() {
                while (true) {
                    //5秒后counter不再变化,可以认为spout已经发送完毕
                    if (!edit) {
                        if (counters.size() > 0) {
                            List<Map.Entry<String, Integer>> list = new ArrayList<Map.Entry<String, Integer>>();
                            list.addAll(counters.entrySet());
                            Collections.sort(list, new ValueComparator());
                            //向下一个bolt发送前N个word
                            for (int i = 0; i < list.size(); i++) {
                                if (i < Integer.parseInt(stormConf.get("N").toString())) {
                                    collector.emit(new Values(list.get(i).getKey() + ":" + list.get(i).getValue()));
                                }
                            }
                        }
                        //发送之后,清空counters,以防spout再次发送word过来
                        counters.clear();
                    }
                    edit = false;
                    try {
                        Thread.sleep(5000);
                    } catch (InterruptedException e) {
                        e.printStackTrace();
                    }
                }
            }
        }).start();
    }
    @Override
    public void execute(Tuple tuple) {
        String str = tuple.getString(0);
        if (counters.containsKey(str)) {
            Integer c = counters.get(str) + 1;
            counters.put(str, c);
        } else {
            counters.put(str, 1);
        }
        edit = true;
    }
    private static class ValueComparator implements Comparator<Map.Entry<String, Integer>> {
        @Override
        public int compare(Entry<String, Integer> entry1, Entry<String, Integer> entry2) {
            return entry2.getValue() - entry1.getValue();
        }
    }
    @Override
    public void declareOutputFields(OutputFieldsDeclarer declarer) {
        declarer.declare(new Fields("word_count"));
    }
    @Override
    public void cleanup() {
    }
    @Override
    public Map<String, Object> getComponentConfiguration() {
        return null;
    }
}

在WordCounter里面有个线程安全的容器ConcurrentHashMap,来存储word以及对应的次数。在prepare方法里启动一个线程,长期监听edit的状态,监听间隔是5秒,
当edit为false,即execute方法不再执行、容器不再变化,可以认为spout已经发送完毕了,可以开始排序取TopN了。这里使用了一个volatile edit(回忆一下volatile的使用场景:
对变量的修改不依赖变量当前的值,这里设置true or false,显然不相互依赖)。

package test.storm.bolt;

import java.io.FileWriter;
import java.io.IOException;
import java.util.Map;

import backtype.storm.task.TopologyContext;
import backtype.storm.topology.BasicOutputCollector;
import backtype.storm.topology.OutputFieldsDeclarer;
import backtype.storm.topology.base.BaseBasicBolt;
import backtype.storm.tuple.Tuple;

public class WordWriter extends BaseBasicBolt {
    private static final long serialVersionUID = -6586283337287975719L;
    private FileWriter writer = null;

    public WordWriter() {
    }

    @Override
    public void prepare(Map stormConf, TopologyContext context) {
        try {
            writer = new FileWriter("/data/tianzhen/output/" + this);
        } catch (IOException e) {
            e.printStackTrace();
        }
    }

    @Override
    public void execute(Tuple input, BasicOutputCollector collector) {
        String s = input.getString(0);
        try {
            writer.write(s);
            writer.write("\n");
            writer.flush();
        } catch (IOException e) {
            e.printStackTrace();
        } finally {
            //writer不能close,因为execute需要一直运行
        }
    }

    @Override
    public void declareOutputFields(OutputFieldsDeclarer declarer) {

    }
}

最后一个bolt做全局的汇总,这里我偷了懒,直接将结果写到文件了,省略截取TopN的过程,因为我这里就一个supervisor节点,所以结果是正确的。

引用连接:http://blog.itpub.net/28912557/viewspace-1579860/

     http://www.cnblogs.com/panfeng412/archive/2012/06/16/storm-common-patterns-of-streaming-top-n.html

猜你喜欢

转载自blog.csdn.net/learn_tech/article/details/82909825