第六章7、8 目录.PPT

                                 第 七 、八 章    文件与磁盘空间管理

分逻辑结构和物理结构:
逻辑结构:
文件系统设计的关键要素:
如何构成一个文件,以及如何存储在外存。
文件结构:
文件的逻辑结构file logical structure:按用户观点如何组织数据;又称文件组织file organization
基本要求:检索速度高、方便修改、降低存储空间费用(不连续)
文件的物理结构:根据外存上的物理块的分配机制,记录文件外存的存储结构。用户感知不到的。

1)文件逻辑结构的类型
有结构文件(记录式)
①定长记录
②变长记录
如何组织记录:
顺序文件。系统需按该类型记录“长度”,通常定长。
索引文件。系统需为文件建立索引表。
索引顺序文件。建索引表,记录每组记录的第一个记录位置。
无结构文件(字符流式)
字节为单位,利用读写指针依次访问。
系统对该类文件不需格式处理。
在这里插入图片描述
在这里插入图片描述
①顺序文件
两种记录排列方式
串结构:按记录形成的时间顺序串行排序。记录顺序与关键字无关;
顺序结构:按关键字排序。
检索方法:
从头检索,顺序查找要找的记录,定长的计算相对快。
顺序结构,可用折半查找、插值查找、跳步查找等算法提高效率

顺序结构记录按关键字排序,可按关键字检索
定长:结合折半查找算法等提高检索速度

变长:从第1个记录开始顺序扫描,直到扫描到要检索的关键字标识的记录(例如:数据库、文件系统的基于文件名排序的目录检索)
顺序文件的优缺点:
不方便随机存取某条记录,但适用批量存取的场合。
适合磁带等特殊介质。
单记录的查找、修改等交互性差;增减不方便(改进办法:把增删改的记录登记在一个事务文件中,在某段时间间隔后再与原文件合并更新)。

②索引文件
为了方便单个记录的随机存取,为文件建立一个索引表,记录每项记录在文件的逻辑地址及记录长度;该索引表按关键字排序,。
索引表内容:
索引号、长度、记录地址指针
检索效率
索引表本身即是个按记录键排序的定长顺序文件,所以能利用算法提高索引表检索速度

一个索引文件可以有多个索引表
为方便用户根据不同记录属性检索记录,为顺序文件建立多个索引表,每种能成为检索条件的域都配备一张索引表。
索引文件的优缺点
适用于变长记录,可提高检索速度,实现直接存取
索引表增加了存储开销

③索引顺序文件(为了节省计算机的存储空间的开销)
既要方便,又要降低开销
本方式是最常见的一种逻辑文件形式。
将顺序文件的所有记录分组
还是建立索引表,但每个表项记录的是每组第1条记录的键值和地址。
组内记录仍按顺序方式检索和使用。
检索一条记录的过程:
先计算记录是在第几组,然后再检索索引确定组在哪里后,在组内顺序查找。
可利用多级索引,进一步提高检索效率。

④直接文件
给定键值(如学号)不需顺序检索直接得到记录的物理地址
在这里插入图片描述
对应文件的物理结构

3、外存分配方式

目标:有效利用外存空间,提高文件访问速度
常用三种方式:
连续分配
链接分配(不连续)
索引分配
通常一个系统中仅采用一种方式
采用的磁盘分配方式决定了文件的“物理结构”
顺序结构;链接式结构;索引式结构。
注意与逻辑结构名类似但不是一回事。

1)连续分配
在这里插入图片描述
缺点:
会产生外存碎片。可紧凑法弥补,但需要额外的空间,和内存紧凑相比更花时间。
创建文件时要给出文件大小;存储空间利用率不高,不利于文件的动态增加和修改;
适用于变化不大顺序访问的文件,在流行的UNIX系统中仍保留了连续文件结构。如对换区

2)链接分配
可以为每一个文件分配一组不相邻的盘块。
设置链接指针,将同属于一个文件的多个离散盘块链接成一个链表,这样形成的文件称为链接文件。会有链接成本。
优点:
离散分配,消除外部碎片,提高利用率
同时适用于文件的动态增长;修改容易

链接有两种形式:
在这里插入图片描述
显式链接(FAT–file allocationtable)
链接信息以信息表的形式显示存放
在这里插入图片描述

FAT表的相关计算
MS-DOS文件分配结构为例:
一个1.2M的磁盘,盘块512B大小;若文件系统采用FAT格式,则FAT表大小如何?
表项个数 = 盘块个数
= 容量 / 盘块大小 = 1.2 *220 / 29 = 1.2 *211 个
表项大小,决定于盘块数量编号需要的位数=12 位;
FAT表大小 = 表项个数 * 表项大小
= 1.2 *211 * 12 bit
= 1.2 *211 * 1.5B = 3.6KB
以半字节(0.5B=4b)为基本单位,表项需12位(1.5B)
由上述公式,若容量为200M的磁盘,盘块仍为512B,FAT表大小如何?

FAT表表项有200K≈218 (个)
表项需20位,即28+4,2.5字节
FAT表需内存大小为200
2.5=500KB

在这里插入图片描述
磁盘组织
以簇为单位分配回收、但不规定盘块大小
磁盘格式化时确定卷的簇大小(物理磁盘扇区的整数倍),512M以内的小磁盘默认簇大小为512B,1G的默认大小为1KB。。。大多数情况是4KB
卷上簇编号为LCN,用户用到的簇顺序编成用户虚拟簇号VCN,NTFS可进行VCN到LCN的映射

文件组织
以卷为单位,将卷的所有文件信息、目录信息、可用未分配空间记录在主控文件表MFT中。
每个文件的信息对应一行,固定大小1KB,称为元数据
文件属性信息、文件数据较少时就直接写在MFT中;较多超出1KB时,记录存放这些信息的簇地址指针。
兼容性上也有不足

3)索引分配
链接的不足
顺序检索的时间成本:不能支持高效的盘块直接存取。要对一个文件进行直接存取,仍需在FAT中顺序的查找许多盘块号。
链接信息的空间成本:FAT需占用较大的内存空间。当磁盘容量较大时,FAT可能要占用数MB以上的内存空间。这是令人难以忍受的
改进:
系统运行时只涉及部分文件,FAT表无需全部调入内存
每个文件单独建索引表(物理盘块索引),记录所有分配给它的盘块号;
建立文件时,便分配一定的外存空间用于存放文件盘块索引表信息;

①单级索引分配
在这里插入图片描述
②多级索引
在这里插入图片描述
若文件较大,存放索引表也需要多个盘块(索引盘块)。
索引盘块亦需要按顺序管理起来
若索引盘块数量较少用指针链接的方式即可;
若索引盘块较多,需对索引盘块也采用索引方式管理,形成多级索引。

在这里插入图片描述
多级索引下的文件大小
若两级索引,盘块1KB,盘块号占4字节
一个盘块可存放的盘块号数有多少个
1KB/4B = 210/4 = 28 = 256(个)
二级索引下的文件可分配的最大盘块数
256 * 256 =26×210=64 K(个)
文件最大长度为
64K(个)1KB=64MB
若盘块大小为4KB,单级索引允许文件最大长度为4MB(4K/4
4KB),二级索引则文件最大可达4GB(1K1K4KB)。

③混合组织索引(增量式索引组织方式)
多种索引方式相结合,以UNIX system V的索引结点为例:
一个索引结点定义为13个地址项:iaddr(0)~iaddr(12),总的来说分为两种:直接地址、间接地址
iaddr(0)~iaddr(9)存放直接地址,即存文件数据的盘块号;
iaddr(10)存放单级索引的索引盘块号;
剩余的用于文件较大时存放多级索引数据。
iaddr(11)存放二级索引的主索引盘块号
iaddr(12)存放三级索引的主索引盘块号

在这里插入图片描述
索引文件在顺序访问或随机访问中都比较灵活,是一种比较 好的文件物理结构,但也是需要一定的用于索引表的空间开销和检索文件索引的时间开销的。
UNIX系统是使用索引结构成功的例子。

显式链接方式
FCB中得到文件首盘号c0。
FAT中检索c0,找到c0项记录的c1,继续找
找到c3后,在C3盘块中偏移428B。
索引方式
FCB中找到盘块索引表的地址d(存放索引表的盘块)
索引表的d+3*4B处即直接检索到物理块设结果为e,在e盘块中偏移428B。

根据外存空间空闲情况分配给文件需要的磁盘空间
管理空闲空间
记录已分配的空间

4、存储空间的管理
为实现存储空间分配,系统需要:
记住空闲存储空间使用情况;为空间设置相应的数据结构;
提供对存储空间分配、回收的操作手段。
典型的管理方法:
1)空闲表和空闲链表法
2)位示图法
3)成组链接法

1)空闲表法和空闲链表法
空闲表法
常用于连续分配管理方式
数据结构
系统为外存上的所有空闲区建立一张空闲表
每个空闲区对应一个空闲表项
(表项包括序号、空闲区的第一个盘块号、空闲盘块数等。)
将所有空闲区按其起始盘块号递增的次序排列,如右图。

在这里插入图片描述
存储空间的分配与回收操作
与内存的动态分配类似,同样可采用首次适应算法、循环首次适应算法等。
回收主要解决对数据结构的数据修改。
应该说明,虽然很少采用连续分配方式,然而在外存的管理中,由于它具有较高的分配速度,可减少访问磁盘的I/O频率,故它在诸多分配方式中仍占有一席之地。(如实现虚拟用的部分外存就是连续分配方式)
空闲链表法
将所有空闲盘区拉成一条空闲链。
数据结构:链
根据构成链所用基本元素的不同,可把链表分成两种形式:
空闲盘块链
空闲盘区链

空闲盘块链
将磁盘上的所有空闲空间,以盘块为单位拉成一条链。
因创建文件而请求分配空间时,系统从链首依次摘下适当数目的空闲盘块分配给用户。
因删除文件而释放存储空间时,系统将回收的盘块依次插入空闲盘块链的末尾。
优点:分配和回收一个盘块的过程非常简单,但为一个文件分配盘块时,可能要重复操作多次

在这里插入图片描述
空闲盘区链

将所有空闲盘区拉成一条链。每个盘区上含有:
指示下一空闲盘区的指针、本盘区大小等信息
分配通常采用首次适应算法。回收盘区时,将回收区与相邻的空闲盘区相合并。
为提高检索速度,可以采用显式方法,为空闲盘区建立一张链表放在内存中。
分配、回收操作涉及的链式数据结构的处理方便
在这里插入图片描述

空闲盘块链
分配回收简单。链表长,大量分配时需要操作的指针多
空闲盘区链
链表长度不定,分配时操作的指针数量相对较少,但分配回收操作相对复杂。

2)位示图法——位示图
利用二进制的一位来表示一个盘块的使用情况。
值为0表示对应的盘块空闲,为1表示已分配。有的系统则相反。
磁盘上的所有盘块都有一个二进制位与之对应,这样由所有盘块所对应的位构成一个集合,称为位示图。
总块数=mn。可用mn个位数来构成位示图,可看成是二维数组(数据结构)。

在这里插入图片描述

盘块的分配与回收
根据位示图进行盘块分配:
顺序扫描位示图。找到为0的二进制位。
将所找到的一个或一组二进制位,转换成与之对应的盘块号。进行分配操作。
盘块号计算公式为:盘块号 = 列总数*(i-1)+ j;
(注意下标i,j从1开始)
修改位示图。
根据位示图进行盘块回收:
将回收盘块的盘块号转换成位示图中的行号和列号。转换公式为:i=(盘块号-1)div列数+1;j=(盘块号-1)mod列数+1
Div 求商,mod 取余,公式中的i、j都是从1开始的
(如12号盘块转换后为1,12)
修改位示图。

优点:从位示图中很容易找到一个或一组相邻接的空闲盘块。
但限于容量问题,常用于微型机和小型机中。

3)成组链接法

大型文件系统,空闲表或空闲链表太长不方便管理操作。
UNIX系统中采用成组链接法,这是将两种方法结合而形成的一种空闲盘块管理方法。
中心思想:
所有盘块按规定大小划分为组;
组间建立链接;
组内的盘块借助一个系统栈可快速处理,且支持离散分配回收。

在这里插入图片描述

成组链接法
链表长度上限固定
组内的盘块借助一个系统栈可快速处理,且分配回收比较简单。
支持离散分配回收。

空闲盘块的组织
空闲盘块号栈。
用来存放当前可用的一组空闲盘块的盘块号(最多含100个号)
栈中尚有的空闲盘块号数N。
(N兼具栈顶指针用。栈底为S.free(0),栈满时栈顶到达S.free(99),N=100,表示有100个盘块供使用。
链接
每一组的第一个盘块记录下一组的盘块号,形成了一条链。
总将链的第一组盘块总数和所有的盘块号,记入栈,作为当前可供分配的空闲盘块号

空闲盘块的分配与回收
分配盘块时,须调用分配过程来完成。
先检查空闲盘块号栈是否上锁,如没有,便从栈顶取出一空闲盘块号,将与之对应的盘块分配给用户,然后将栈顶指针下移一格。
若该盘块号已是栈底,即S.free(0),到达当前栈中最后一个可供分配的盘块号。
读取该盘块号所对应的盘块中的信息:即下一组可用的盘块号入栈。
原栈底盘块分配出去。修改栈中的空闲盘块数。
回收
回收盘块号记入栈顶,空闲数N加1
N达到100时,若再回收一块,则将该100条信息填写入新回收块。

猜你喜欢

转载自blog.csdn.net/qq_40394087/article/details/84454688