2018-2019-1 20165226 《信息安全系统设计基础》第6周学习总结

2018-2019-1 20165226 《信息安全系统设计基础》第6周学习总结

目录


一、教材学习内容总结


1、 Unix I/O

这一节涉及到操作系统的基本抽象之一——文件。也就是说,所有的I/O设备都被模型化为文件,而所有的输入输出都被当做对相应文件的读/写。

  • I/O设备:网络、磁盘和终端
    • 描述符:打开文件时,内核返回一个小的非负整数。
    • Unix外壳创建的每个进程开始时都有三个打开的文件:标准输入(描述符为0)、标准输出(描述符为1)、标准错误(描述符为2)。
    • 改变当前的文件位置:文件位置为k,初始为0。
    • seek操作:显式地设置文件的当前位置为k。
    • 关闭文件:内核释放文件打开时创建的数据结构,并将这个描述符恢复到可用的描述符池中。无论一个进程因为何种原因终止时,内核都会关闭所有打开的文件并释放它们的存储器资源。

2、打开和关闭文件

(1)open函数:打开一个已存在的文件或者创建一个新文件

  • 定义:
#include <sys/types.h>
#include <sys/stat.h>
#include <fcntl.h>

int open(char *filename,int flags,mode_t mode);
  • 参数解析:
    • 返回值:类型为int型,返回的是描述符数字,总是在进程中当前没有打开的最小描述符。如果出错,返回值为-1.
    • filename:文件名
    • flags:指明进程打算如何访问这个文件,可以取的值见下:
  O_RDONLY:只读
  O_WRONLY:只写
  O_RDWR:可读可写

  O_CREAT:文件不存在,就创建新文件
  O_TRUNC:如果文件存在,就截断它
  O_APPEND:写操作前设置文件位置到结尾处

这些值可以用或连接起来。
- mode:指定了新文件的访问权限位,符号名称如下:

(2)close函数

  • 函数定义
#include <unistd.h>
int close(int fd);
  • 参数解析
    • 返回值:成功返回0,出错返回-1

      关闭一个已经关闭的描述符会出错

    • fd:即文件的描述符。

3、读和写文件

  • 应用程序是通过分别调用read和write函数来执行输入和输出的。
#include <unistd.h>
ssize_t read(int fd,void *buf,size_t n);
ssize_t write(int fd,const void *buf,size_t n);

read函数:从描述符为fd的当前文件位置拷贝最多n个字节到存储器位置buf。返回值:-1表示一个错误;0表示EOF;否则,返回值表示的是实际传送的字节数量。
从存储器位置buf拷贝至多n个字节到描述符fd的当前文件位置。返回值:若成功则为写的字节数,若出错则为-1。

  • lseek函数:应用程序能够显式地修改当前文件的位置。
  • 不足值:read和write传送的字节比应用程序要求的少。
    • 读时遇到EOF
    • 从终端读文本行
    • 读和写网络套接字

4、用RIO包健壮的读写

RIO包的实质:I/O包
RIO包提供的两种函数:

  • 无缓冲的输入输出函数
  • 带缓冲的输入函数(线程安全)

RIO的无缓冲的输入输出函数

  • 应用程序通过调用rioreadn和riowritten函数可以在存储器和文件之间直接传送数据。
#include "csapp.h"
ssize_t rio_readn(int fd,void *usrbuf,size_t n);
ssize_t rio_writen(int fd,void *usrbuf,size_t n);
  • rio_ readn函数在遇到EOF时,只能返回一个不足值;
  • rio_ writen函数绝不会返回不足值。

RIO的带缓冲的输入函数

扫描二维码关注公众号,回复: 3932209 查看本文章
  • 一个文本行就是一个由换行符结尾的ASCII码字符序列。在Unix系统中,换行符(‘\n')与ASCII码换行符(LF)相同,数字值为0x0a。
  • 计算文本文件中文本行的数量,更好地方法是:
    • 调用一个包装函数(rio、readlineb),它从一个内部读缓冲区拷贝一个文本行,当缓冲区变空时,会自动地调用read重新填满缓冲区。
#include "csapp.h"
//每打开一个描述符都会调用一次该函数,它将描述符fd和地址rp处的类型为rio_t的缓冲区联系起来。
void rio_readinitb(rio_t *rp,int fd);
//从文件rp中读取一个文本行(包括结尾的换行符),将它拷贝到存储器位置usrbuf,并用空字符来结束这个文本行。
ssize_t rio_readlineb(rio_t *rp,void *usrbuf,size_t maxlen);
//从文件rp中最多读n个字节到存储器位置usrbuf。对同一描述符,rioreadnb和rioreadlineb的调用可以交叉进行。
ssize_t rio_readnb(rio_t *rp,void *usrbuf,size_t n);

读取文件元数据

  • 检索文件信息(元数据):应用程序能够通过调用stat和fstat函数
#include <unistd.h>
#include <sys/stat.h>
int stat(const char *filename,struct stat *buf);
//stat函数以一个文件名作为输入,填写一个stat数据结构中的各个成员。
int fstat(int fd,struct stat *buf);
//fstat函数以文件描述符而不是文件名作为输入。
  • st_size成员包含了文件的字节数大小
  • st_mode成员编码了文件访问许可位和文件类型
  • Unix提供的宏指令根据st_mode成员来确定文件的类型
宏指令 描述
S_ISREG() 这是一个普通文件吗?
S_ISDIR() 这是一个目录文件吗?
S_ISSOCK() 这是一个网络套接字吗?

返回目录

二、练习


练习题10.1

#include "csapp.h"
int main(){

        int fd1,fd2;
        fd1=Open("foo.txt",O_RDONLY,0);
        Close(fd1);
        fd2=Open("baz.txt",O_RDONLY,0);
        print("fd2=%d\n",fd2);
        exit(0);

}
  • 编译时发生错误:

  • 说明是Linux系统没有自带csapp/h头文件,需要自己编写。所以,只要把这个头文件加入到系统的include目录中就好了。
    • csapp.h
/* $begin csapp.h */
#ifndef __CSAPP_H__
#define __CSAPP_H__
#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
#include <string.h>
#include <ctype.h>
#include <setjmp.h>
#include <signal.h>
#include <sys/time.h>
#include <sys/types.h>
#include <sys/wait.h>
#include <sys/stat.h>
#include <fcntl.h>
#include <sys/mman.h>
#include <errno.h>
#include <math.h>
#include <pthread.h>
#include <semaphore.h>
#include <sys/socket.h>
#include <netdb.h>
#include <netinet/in.h>
#include <arpa/inet.h>
/* Default file permissions are DEF_MODE & ~DEF_UMASK */
/* $begin createmasks */
#define DEF_MODE   S_IRUSR|S_IWUSR|S_IRGRP|S_IWGRP|S_IROTH|S_IWOTH
#define DEF_UMASK  S_IWGRP|S_IWOTH
/* $end createmasks */
/* Simplifies calls to bind(), connect(), and accept() */
/* $begin sockaddrdef */
typedef struct sockaddr SA;
/* $end sockaddrdef */
/* Persistent state for the robust I/O (Rio) package */
/* $begin rio_t */
#define RIO_BUFSIZE 8192
typedef struct {
    int rio_fd;                /* descriptor for this internal buf */
    int rio_cnt;               /* unread bytes in internal buf */
    char *rio_bufptr;          /* next unread byte in internal buf */
    char rio_buf[RIO_BUFSIZE]; /* internal buffer */
} rio_t;
/* $end rio_t */
/* External variables */
extern int h_errno;    /* defined by BIND for DNS errors */ 
extern char **environ; /* defined by libc */
/* Misc constants */
#define MAXLINE  8192  /* max text line length */
#define MAXBUF   8192  /* max I/O buffer size */
#define LISTENQ  1024  /* second argument to listen() */
/* Our own error-handling functions */
void unix_error(char *msg);
void posix_error(int code, char *msg);
void dns_error(char *msg);
void app_error(char *msg);
/* Process control wrappers */
pid_t Fork(void);
void Execve(const char *filename, char *const argv[], char *const envp[]);
pid_t Wait(int *status);
pid_t Waitpid(pid_t pid, int *iptr, int options);
void Kill(pid_t pid, int signum);
unsigned int Sleep(unsigned int secs);
void Pause(void);
unsigned int Alarm(unsigned int seconds);
void Setpgid(pid_t pid, pid_t pgid);
pid_t Getpgrp();

/* Signal wrappers */
typedef void handler_t(int);
handler_t *Signal(int signum, handler_t *handler);
void Sigprocmask(int how, const sigset_t *set, sigset_t *oldset);
void Sigemptyset(sigset_t *set);
void Sigfillset(sigset_t *set);
void Sigaddset(sigset_t *set, int signum);
void Sigdelset(sigset_t *set, int signum);
int Sigismember(const sigset_t *set, int signum);
/* Unix I/O wrappers */
int Open(const char *pathname, int flags, mode_t mode);
ssize_t Read(int fd, void *buf, size_t count);
ssize_t Write(int fd, const void *buf, size_t count);
off_t Lseek(int fildes, off_t offset, int whence);
void Close(int fd);
int Select(int  n, fd_set *readfds, fd_set *writefds, fd_set *exceptfds, 
       struct timeval *timeout);
int Dup2(int fd1, int fd2);
void Stat(const char *filename, struct stat *buf);
void Fstat(int fd, struct stat *buf) ;
/* Memory mapping wrappers */
void *Mmap(void *addr, size_t len, int prot, int flags, int fd, off_t offset);
void Munmap(void *start, size_t length);
/* Standard I/O wrappers */
void Fclose(FILE *fp);
FILE *Fdopen(int fd, const char *type);
char *Fgets(char *ptr, int n, FILE *stream);
FILE *Fopen(const char *filename, const char *mode);
void Fputs(const char *ptr, FILE *stream);
size_t Fread(void *ptr, size_t size, size_t nmemb, FILE *stream);
void Fwrite(const void *ptr, size_t size, size_t nmemb, FILE *stream);
/* Dynamic storage allocation wrappers */
void *Malloc(size_t size);
void *Realloc(void *ptr, size_t size);
void *Calloc(size_t nmemb, size_t size);
void Free(void *ptr);
/* Sockets interface wrappers */
int Socket(int domain, int type, int protocol);
void Setsockopt(int s, int level, int optname, const void *optval, int optlen);
void Bind(int sockfd, struct sockaddr *my_addr, int addrlen);
void Listen(int s, int backlog);
int Accept(int s, struct sockaddr *addr, socklen_t *addrlen);
void Connect(int sockfd, struct sockaddr *serv_addr, int addrlen);
/* DNS wrappers */
struct hostent *Gethostbyname(const char *name);
struct hostent *Gethostbyaddr(const char *addr, int len, int type);
/* Pthreads thread control wrappers */
void Pthread_create(pthread_t *tidp, pthread_attr_t *attrp, 
            void * (*routine)(void *), void *argp);
void Pthread_join(pthread_t tid, void **thread_return);
void Pthread_cancel(pthread_t tid);
void Pthread_detach(pthread_t tid);
void Pthread_exit(void *retval);
pthread_t Pthread_self(void);
void Pthread_once(pthread_once_t *once_control, void (*init_function)());
/* POSIX semaphore wrappers */
void Sem_init(sem_t *sem, int pshared, unsigned int value);
void P(sem_t *sem);
void V(sem_t *sem);

/* Rio (Robust I/O) package */
ssize_t rio_readn(int fd, void *usrbuf, size_t n);
ssize_t rio_writen(int fd, void *usrbuf, size_t n);
void rio_readinitb(rio_t *rp, int fd); 
ssize_t rio_readnb(rio_t *rp, void *usrbuf, size_t n);
ssize_t rio_readlineb(rio_t *rp, void *usrbuf, size_t maxlen);
/* Wrappers for Rio package */
ssize_t Rio_readn(int fd, void *usrbuf, size_t n);
void Rio_writen(int fd, void *usrbuf, size_t n);
void Rio_readinitb(rio_t *rp, int fd); 
ssize_t Rio_readnb(rio_t *rp, void *usrbuf, size_t n);
ssize_t Rio_readlineb(rio_t *rp, void *usrbuf, size_t maxlen);
/* Client/server helper functions */
int open_clientfd(char *hostname, int portno);
int open_listenfd(int portno);
/* Wrappers for client/server helper functions */
int Open_clientfd(char *hostname, int port);
int Open_listenfd(int port); 
#include <csapp.c>
#endif /* __CSAPP_H__ */
/* $end csapp.h */
  • csappp.c
/* $begin csapp.c */
#include "csapp.h"
/************************** 
 * Error-handling functions
 **************************/
/* $begin errorfuns */
/* $begin unixerror */
void unix_error(char *msg) /* unix-style error */
{
    fprintf(stderr, "%s: %s\n", msg, strerror(errno));
    exit(0);
}
/* $end unixerror */
void posix_error(int code, char *msg) /* posix-style error */
{
    fprintf(stderr, "%s: %s\n", msg, strerror(code));
    exit(0);
}
void dns_error(char *msg) /* dns-style error */
{
    fprintf(stderr, "%s: DNS error %d\n", msg, h_errno);
    exit(0);
}
void app_error(char *msg) /* application error */
{
    fprintf(stderr, "%s\n", msg);
    exit(0);
}
/* $end errorfuns */
/*********************************************
 * Wrappers for Unix process control functions
 ********************************************/
/* $begin forkwrapper */
pid_t Fork(void) 
{
    pid_t pid;

    if ((pid = fork()) < 0)
    unix_error("Fork error");
    return pid;
}
/* $end forkwrapper */
void Execve(const char *filename, char *const argv[], char *const envp[]) 
{
    if (execve(filename, argv, envp) < 0)
    unix_error("Execve error");
}
/* $begin wait */
pid_t Wait(int *status) 
{
    pid_t pid;
    if ((pid  = wait(status)) < 0)
    unix_error("Wait error");
    return pid;
}
/* $end wait */

pid_t Waitpid(pid_t pid, int *iptr, int options) 
{
    pid_t retpid;
    if ((retpid  = waitpid(pid, iptr, options)) < 0) 
    unix_error("Waitpid error");
    return(retpid);
}
/* $begin kill */
void Kill(pid_t pid, int signum) 
{
    int rc;
    if ((rc = kill(pid, signum)) < 0)
    unix_error("Kill error");
}
/* $end kill */
void Pause() 
{
    (void)pause();
    return;
}
unsigned int Sleep(unsigned int secs) 
{
    unsigned int rc;
    if ((rc = sleep(secs)) < 0)
    unix_error("Sleep error");
    return rc;
}
unsigned int Alarm(unsigned int seconds) {
    return alarm(seconds);
}
void Setpgid(pid_t pid, pid_t pgid) {
    int rc;
    if ((rc = setpgid(pid, pgid)) < 0)
    unix_error("Setpgid error");
    return;
}
pid_t Getpgrp(void) {
    return getpgrp();
}
/************************************
 * Wrappers for Unix signal functions 
 ***********************************/
/* $begin sigaction */
handler_t *Signal(int signum, handler_t *handler) 
{
    struct sigaction action, old_action;

    action.sa_handler = handler;  
    sigemptyset(&action.sa_mask); /* block sigs of type being handled */
    action.sa_flags = SA_RESTART; /* restart syscalls if possible */
    if (sigaction(signum, &action, &old_action) < 0)
    unix_error("Signal error");
    return (old_action.sa_handler);
}
/* $end sigaction */
void Sigprocmask(int how, const sigset_t *set, sigset_t *oldset)
{
    if (sigprocmask(how, set, oldset) < 0)
    unix_error("Sigprocmask error");
    return;
}
void Sigemptyset(sigset_t *set)
{
    if (sigemptyset(set) < 0)
    unix_error("Sigemptyset error");
    return;
}
void Sigfillset(sigset_t *set)
{ 
    if (sigfillset(set) < 0)
    unix_error("Sigfillset error");
    return;
}
void Sigaddset(sigset_t *set, int signum)
{
    if (sigaddset(set, signum) < 0)
    unix_error("Sigaddset error");
    return;
}
void Sigdelset(sigset_t *set, int signum)
{
    if (sigdelset(set, signum) < 0)
    unix_error("Sigdelset error");
    return;
}
int Sigismember(const sigset_t *set, int signum)
{
    int rc;
    if ((rc = sigismember(set, signum)) < 0)
    unix_error("Sigismember error");
    return rc;
}
/********************************
 * Wrappers for Unix I/O routines
 ********************************/
int Open(const char *pathname, int flags, mode_t mode) 
{
    int rc;
    if ((rc = open(pathname, flags, mode))  < 0)
    unix_error("Open error");
    return rc;
}
ssize_t Read(int fd, void *buf, size_t count) 
{
    ssize_t rc;
    if ((rc = read(fd, buf, count)) < 0) 
    unix_error("Read error");
    return rc;
}
ssize_t Write(int fd, const void *buf, size_t count) 
{
    ssize_t rc;
    if ((rc = write(fd, buf, count)) < 0)
    unix_error("Write error");
    return rc;
}
off_t Lseek(int fildes, off_t offset, int whence) 
{
    off_t rc;
    if ((rc = lseek(fildes, offset, whence)) < 0)
    unix_error("Lseek error");
    return rc;
}
void Close(int fd) 
{
    int rc;
    if ((rc = close(fd)) < 0)
    unix_error("Close error");
}
int Select(int  n, fd_set *readfds, fd_set *writefds,
       fd_set *exceptfds, struct timeval *timeout) 
{
    int rc;
    if ((rc = select(n, readfds, writefds, exceptfds, timeout)) < 0)
    unix_error("Select error");
    return rc;
}
int Dup2(int fd1, int fd2) 
{
    int rc;
    if ((rc = dup2(fd1, fd2)) < 0)
    unix_error("Dup2 error");
    return rc;
}
void Stat(const char *filename, struct stat *buf) 
{
    if (stat(filename, buf) < 0)
    unix_error("Stat error");
}
void Fstat(int fd, struct stat *buf) 
{
    if (fstat(fd, buf) < 0)
    unix_error("Fstat error");
}
/***************************************
 * Wrappers for memory mapping functions
 ***************************************/
void *Mmap(void *addr, size_t len, int prot, int flags, int fd, off_t offset) 
{
    void *ptr;
    if ((ptr = mmap(addr, len, prot, flags, fd, offset)) == ((void *) -1))
    unix_error("mmap error");
    return(ptr);
}
void Munmap(void *start, size_t length) 
{
    if (munmap(start, length) < 0)
    unix_error("munmap error");
}
/***************************************************
 * Wrappers for dynamic storage allocation functions
 ***************************************************/
void *Malloc(size_t size) 
{
    void *p;
    if ((p  = malloc(size)) == NULL)
    unix_error("Malloc error");
    return p;
}
void *Realloc(void *ptr, size_t size) 
{
    void *p;
    if ((p  = realloc(ptr, size)) == NULL)
    unix_error("Realloc error");
    return p;
}
void *Calloc(size_t nmemb, size_t size) 
{
    void *p;
    if ((p = calloc(nmemb, size)) == NULL)
    unix_error("Calloc error");
    return p;
}
void Free(void *ptr) 
{
    free(ptr);
}
/******************************************
 * Wrappers for the Standard I/O functions.
 ******************************************/
void Fclose(FILE *fp) 
{
    if (fclose(fp) != 0)
    unix_error("Fclose error");
}
FILE *Fdopen(int fd, const char *type) 
{
    FILE *fp;
    if ((fp = fdopen(fd, type)) == NULL)
    unix_error("Fdopen error");
    return fp;
}
char *Fgets(char *ptr, int n, FILE *stream) 
{
    char *rptr;
    if (((rptr = fgets(ptr, n, stream)) == NULL) && ferror(stream))
    app_error("Fgets error");
    return rptr;
}
FILE *Fopen(const char *filename, const char *mode) 
{
    FILE *fp;
    if ((fp = fopen(filename, mode)) == NULL)
    unix_error("Fopen error");
    return fp;
}
void Fputs(const char *ptr, FILE *stream) 
{
    if (fputs(ptr, stream) == EOF)
    unix_error("Fputs error");
}
size_t Fread(void *ptr, size_t size, size_t nmemb, FILE *stream) 
{
    size_t n;
    if (((n = fread(ptr, size, nmemb, stream)) < nmemb) && ferror(stream)) 
    unix_error("Fread error");
    return n;
}
void Fwrite(const void *ptr, size_t size, size_t nmemb, FILE *stream) 
{
    if (fwrite(ptr, size, nmemb, stream) < nmemb)
    unix_error("Fwrite error");
}
/**************************** 
 * Sockets interface wrappers
 ****************************/
int Socket(int domain, int type, int protocol) 
{
    int rc;
    if ((rc = socket(domain, type, protocol)) < 0)
    unix_error("Socket error");
    return rc;
}
void Setsockopt(int s, int level, int optname, const void *optval, int optlen) 
{
    int rc;
    if ((rc = setsockopt(s, level, optname, optval, optlen)) < 0)
    unix_error("Setsockopt error");
}
void Bind(int sockfd, struct sockaddr *my_addr, int addrlen) 
{
    int rc;
    if ((rc = bind(sockfd, my_addr, addrlen)) < 0)
    unix_error("Bind error");
}
void Listen(int s, int backlog) 
{
    int rc;
    if ((rc = listen(s,  backlog)) < 0)
    unix_error("Listen error");
}

int Accept(int s, struct sockaddr *addr, socklen_t *addrlen) 
{
    int rc;
    if ((rc = accept(s, addr, addrlen)) < 0)
    unix_error("Accept error");
    return rc;
}
void Connect(int sockfd, struct sockaddr *serv_addr, int addrlen) 
{
    int rc;
    if ((rc = connect(sockfd, serv_addr, addrlen)) < 0)
    unix_error("Connect error");
}
/************************
 * DNS interface wrappers 
 ***********************/
/* $begin gethostbyname */
struct hostent *Gethostbyname(const char *name) 
{
    struct hostent *p;
    if ((p = gethostbyname(name)) == NULL)
    dns_error("Gethostbyname error");
    return p;
}
/* $end gethostbyname */
struct hostent *Gethostbyaddr(const char *addr, int len, int type) 
{
    struct hostent *p;
    if ((p = gethostbyaddr(addr, len, type)) == NULL)
    dns_error("Gethostbyaddr error");
    return p;
}
/************************************************
 * Wrappers for Pthreads thread control functions
 ************************************************/
void Pthread_create(pthread_t *tidp, pthread_attr_t *attrp, 
            void * (*routine)(void *), void *argp) 
{
    int rc;
    if ((rc = pthread_create(tidp, attrp, routine, argp)) != 0)
    posix_error(rc, "Pthread_create error");
}
void Pthread_cancel(pthread_t tid) {
    int rc;
    if ((rc = pthread_cancel(tid)) != 0)
    posix_error(rc, "Pthread_cancel error");
}
void Pthread_join(pthread_t tid, void **thread_return) {
    int rc;
    if ((rc = pthread_join(tid, thread_return)) != 0)
    posix_error(rc, "Pthread_join error");
}
/* $begin detach */
void Pthread_detach(pthread_t tid) {
    int rc;
    if ((rc = pthread_detach(tid)) != 0)
    posix_error(rc, "Pthread_detach error");
}
/* $end detach */
void Pthread_exit(void *retval) {
    pthread_exit(retval);
}
pthread_t Pthread_self(void) {
    return pthread_self();
}
void Pthread_once(pthread_once_t *once_control, void (*init_function)()) {
    pthread_once(once_control, init_function);
}
/*******************************
 * Wrappers for Posix semaphores
 *******************************/
void Sem_init(sem_t *sem, int pshared, unsigned int value) 
{
    if (sem_init(sem, pshared, value) < 0)
    unix_error("Sem_init error");
}
void P(sem_t *sem) 
{
    if (sem_wait(sem) < 0)
    unix_error("P error");
}
void V(sem_t *sem) 
{
    if (sem_post(sem) < 0)
    unix_error("V error");
}
/*********************************************************************
 * The Rio package - robust I/O functions
 **********************************************************************/
/*
 * rio_readn - robustly read n bytes (unbuffered)
 */
/* $begin rio_readn */
ssize_t rio_readn(int fd, void *usrbuf, size_t n) 
{
    size_t nleft = n;
    ssize_t nread;
    char *bufp = usrbuf;
    while (nleft > 0) {
    if ((nread = read(fd, bufp, nleft)) < 0) {
        if (errno == EINTR) /* interrupted by sig handler return */
        nread = 0;      /* and call read() again */
        else
        return -1;      /* errno set by read() */ 
    } 
    else if (nread == 0)
        break;              /* EOF */
    nleft -= nread;
    bufp += nread;
    }
    return (n - nleft);         /* return >= 0 */
}
/* $end rio_readn */

/*
 * rio_writen - robustly write n bytes (unbuffered)
 */
/* $begin rio_writen */
ssize_t rio_writen(int fd, void *usrbuf, size_t n) 
{
    size_t nleft = n;
    ssize_t nwritten;
    char *bufp = usrbuf;
    while (nleft > 0) {
    if ((nwritten = write(fd, bufp, nleft)) <= 0) {
        if (errno == EINTR)  /* interrupted by sig handler return */
        nwritten = 0;    /* and call write() again */
        else
        return -1;       /* errno set by write() */
    }
    nleft -= nwritten;
    bufp += nwritten;
    }
    return n;
}
/* $end rio_writen */
/* 
 * rio_read - This is a wrapper for the Unix read() function that
 *    transfers min(n, rio_cnt) bytes from an internal buffer to a user
 *    buffer, where n is the number of bytes requested by the user and
 *    rio_cnt is the number of unread bytes in the internal buffer. On
 *    entry, rio_read() refills the internal buffer via a call to
 *    read() if the internal buffer is empty.
 */
/* $begin rio_read */
static ssize_t rio_read(rio_t *rp, char *usrbuf, size_t n)
{
    int cnt;
    while (rp->rio_cnt <= 0) {  /* refill if buf is empty */
    rp->rio_cnt = read(rp->rio_fd, rp->rio_buf, 
               sizeof(rp->rio_buf));
    if (rp->rio_cnt < 0) {
        if (errno != EINTR) /* interrupted by sig handler return */
        return -1;
    }
    else if (rp->rio_cnt == 0)  /* EOF */
        return 0;
    else 
        rp->rio_bufptr = rp->rio_buf; /* reset buffer ptr */
    }

    /* Copy min(n, rp->rio_cnt) bytes from internal buf to user buf */
    cnt = n;          
    if (rp->rio_cnt < n)   
    cnt = rp->rio_cnt;
    memcpy(usrbuf, rp->rio_bufptr, cnt);
    rp->rio_bufptr += cnt;
    rp->rio_cnt -= cnt;
    return cnt;
}
/* $end rio_read */

/*
 * rio_readinitb - Associate a descriptor with a read buffer and reset buffer
 */
/* $begin rio_readinitb */
void rio_readinitb(rio_t *rp, int fd) 
{
    rp->rio_fd = fd;  
    rp->rio_cnt = 0;  
    rp->rio_bufptr = rp->rio_buf;
}
/* $end rio_readinitb */
/*
 * rio_readnb - Robustly read n bytes (buffered)
 */
/* $begin rio_readnb */
ssize_t rio_readnb(rio_t *rp, void *usrbuf, size_t n) 
{
    size_t nleft = n;
    ssize_t nread;
    char *bufp = usrbuf;
    while (nleft > 0) {
    if ((nread = rio_read(rp, bufp, nleft)) < 0) {
        if (errno == EINTR) /* interrupted by sig handler return */
        nread = 0;      /* call read() again */
        else
        return -1;      /* errno set by read() */ 
    } 
    else if (nread == 0)
        break;              /* EOF */
    nleft -= nread;
    bufp += nread;
    }
    return (n - nleft);         /* return >= 0 */
}
/* $end rio_readnb */
/* 
 * rio_readlineb - robustly read a text line (buffered)
 */
/* $begin rio_readlineb */
ssize_t rio_readlineb(rio_t *rp, void *usrbuf, size_t maxlen) 
{
    int n, rc;
    char c, *bufp = usrbuf;
    for (n = 1; n < maxlen; n++) { 
    if ((rc = rio_read(rp, &c, 1)) == 1) {
        *bufp++ = c;
        if (c == '\n')
        break;
    } else if (rc == 0) {
        if (n == 1)
        return 0; /* EOF, no data read */
        else
        break;    /* EOF, some data was read */
    } else
        return -1;    /* error */
    }
    *bufp = 0;
    return n;
}
/* $end rio_readlineb */

/**********************************
 * Wrappers for robust I/O routines
 **********************************/
ssize_t Rio_readn(int fd, void *ptr, size_t nbytes) 
{
    ssize_t n;

    if ((n = rio_readn(fd, ptr, nbytes)) < 0)
    unix_error("Rio_readn error");
    return n;
}
void Rio_writen(int fd, void *usrbuf, size_t n) 
{
    if (rio_writen(fd, usrbuf, n) != n)
    unix_error("Rio_writen error");
}
void Rio_readinitb(rio_t *rp, int fd)
{
    rio_readinitb(rp, fd);
} 
ssize_t Rio_readnb(rio_t *rp, void *usrbuf, size_t n) 
{
    ssize_t rc;

    if ((rc = rio_readnb(rp, usrbuf, n)) < 0)
    unix_error("Rio_readnb error");
    return rc;
}
ssize_t Rio_readlineb(rio_t *rp, void *usrbuf, size_t maxlen) 
{
    ssize_t rc;
    if ((rc = rio_readlineb(rp, usrbuf, maxlen)) < 0)
    unix_error("Rio_readlineb error");
    return rc;
} 
/******************************** 
 * Client/server helper functions
 ********************************/
/*
 * open_clientfd - open connection to server at <hostname, port> 
 *   and return a socket descriptor ready for reading and writing.
 *   Returns -1 and sets errno on Unix error. 
 *   Returns -2 and sets h_errno on DNS (gethostbyname) error.
 */
/* $begin open_clientfd */
int open_clientfd(char *hostname, int port) 
{
    int clientfd;
    struct hostent *hp;
    struct sockaddr_in serveraddr;
    if ((clientfd = socket(AF_INET, SOCK_STREAM, 0)) < 0)
    return -1; /* check errno for cause of error */
    /* Fill in the server's IP address and port */
    if ((hp = gethostbyname(hostname)) == NULL)
    return -2; /* check h_errno for cause of error */
    bzero((char *) &serveraddr, sizeof(serveraddr));
    serveraddr.sin_family = AF_INET;
    bcopy((char *)hp->h_addr_list[0], 
      (char *)&serveraddr.sin_addr.s_addr, hp->h_length);
    serveraddr.sin_port = htons(port);
    /* Establish a connection with the server */
    if (connect(clientfd, (SA *) &serveraddr, sizeof(serveraddr)) < 0)
    return -1;
    return clientfd;
}
/* $end open_clientfd */
/*  
 * open_listenfd - open and return a listening socket on port
 *     Returns -1 and sets errno on Unix error.
 */
/* $begin open_listenfd */
int open_listenfd(int port) 
{
    int listenfd, optval=1;
    struct sockaddr_in serveraddr;
    /* Create a socket descriptor */
    if ((listenfd = socket(AF_INET, SOCK_STREAM, 0)) < 0)
    return -1;
    /* Eliminates "Address already in use" error from bind. */
    if (setsockopt(listenfd, SOL_SOCKET, SO_REUSEADDR, 
           (const void *)&optval , sizeof(int)) < 0)
    return -1;
    /* Listenfd will be an endpoint for all requests to port
       on any IP address for this host */
    bzero((char *) &serveraddr, sizeof(serveraddr));
    serveraddr.sin_family = AF_INET; 
    serveraddr.sin_addr.s_addr = htonl(INADDR_ANY); 
    serveraddr.sin_port = htons((unsigned short)port); 
    if (bind(listenfd, (SA *)&serveraddr, sizeof(serveraddr)) < 0)
    return -1;
    /* Make it a listening socket ready to accept connection requests */
    if (listen(listenfd, LISTENQ) < 0)
    return -1;
    return listenfd;
}
/* $end open_listenfd */
/******************************************
 * Wrappers for the client/server helper routines 
 ******************************************/
int Open_clientfd(char *hostname, int port) 
{
    int rc;
    if ((rc = open_clientfd(hostname, port)) < 0) {
    if (rc == -1)
        unix_error("Open_clientfd Unix error");
    else        
        dns_error("Open_clientfd DNS error");
    }
    return rc;
}
int Open_listenfd(int port) 
{
    int rc;
    if ((rc = open_listenfd(port)) < 0)
    unix_error("Open_listenfd error");
    return rc;
}
/* $end csapp.c */

返回目录

三、代码托管与统计


****
代码托管

返回目录

四、学习进度条


代码行数(新增/累积) 博客量(新增/累积) 学习时间(新增/累积) 重要成长
目标 5000行 30篇 400小时
第一周 87/87 2/2 20/20
第二周 71/158 1/3 12/32
第三周 100/258 2/5 13/45
第四周 3265/9750 2/7 15/60
第五周 282/9786 1/8 8/68
第六周 1980/13996 2/10 8/76

尝试一下记录「计划学习时间」和「实际学习时间」,到期末看看能不能改进自己的计划能力。这个工作学习中很重要,也很有用。
耗时估计的公式
:Y=X+X/N ,Y=X-X/N,训练次数多了,X、Y就接近了。

参考:软件工程软件的估计为什么这么难软件工程 估计方法

  • 计划学习时间:8小时

  • 实际学习时间:8小时

  • 改进情况:

(有空多看看现代软件工程 课件
软件工程师能力自我评价表
)

返回目录

五、参考资料


返回目录

猜你喜欢

转载自www.cnblogs.com/musea/p/9875423.html