4、Synchronized 保证线程安全的原理

理论层面

  Synchronized 可以保证方法或者代码在运行时,同一时刻只有一个方法可以进入到临界区,同时它还可以保证共享变量的内存可见性

    java中每一个对象都可以作为锁,这是synchronized实现同步的基础

  • 普通同步方法,锁是当前对象的实例
  • 静态同步方法,锁是当前类的class对象
  • 同步方法快,锁是括号里面的对象

    当一个线程访问同步代码块时,首先需要先获取锁才能执行同步代码块,当退出或抛出异常是必须释放锁

    利用javap工具查看生成的class文件信息来分析synchronize的实现

java对象头

  对象的锁信息存在java对象头中的,虚拟机的对象头主要包括两个部分数据

    Klass Pointer(类型指针)是对象指向它的类元数据的指针,虚拟机通过这个指针来确定这个对象是哪个类的实例

    Mark Word(标记字段):用于存储对象自身的运行时数据,它是实现轻量级锁和偏向锁的关键

    Mark Word用于存储对象自身的运行时数据,如哈希码(HashCode)、GC分代年龄、锁状态标志、线程持有的锁、偏向线程 ID、偏向时间戳等等。Java对象头一般占有两个机器码(在32位虚拟机中,1个机器码等于4字节,也就是32bit),但是如果对象是数组类型,则需要三个机器码,因为JVM虚拟机可以通过Java对象的元数据信息确定Java对象的大小,但是无法从数组的元数据来确认数组的大小,所以用一块来记录数组长度。

    对象头信息是与对象自身定义的数据无关的额外存储成本,但是考虑到虚拟机的空间效率,Mark Word被设计成一个非固定的数据结构以便在极小的空间内存存储尽量多的数据,它会根据对象的状态复用自己的存储空间

锁分类

无锁状态,偏向锁状态,轻量级锁状态和重量级锁状态,它会随着竞争情况逐渐升级。锁可以升级但不能降级,目的是为了提高获得锁和释放锁的效率。

  • 无锁 --> 偏向锁 --> 轻量级 --> 重量级

偏向锁

引入背景:大多数情况下锁不仅不存在多线程竞争,而且总是由同一线程多次获得,为了让线程获得锁的代价更低而引入了偏向锁,减少不必要的CAS操作。

加锁:当一个线程访问同步块并获取锁时,会在对象头和栈帧中的锁记录里存储锁偏向的线程ID,以后该线程在进入和退出同步块时不需要花费CAS操作来加锁和解锁,而只需简单的测试一下对象头的Mark Word里是否存储着指向当前线程的偏向锁,如果测试成功,表示线程已经获得了锁,如果测试失败,则需要再测试下Mark Word中偏向锁的标识是否设置成1(表示当前是偏向锁),如果没有设置,则使用CAS竞争锁,如果设置了,则尝试使用CAS将对象头的偏向锁指向当前线程(此时会引发竞争,偏向锁会升级为轻量级锁)。

膨胀过程:当前线程执行CAS获取偏向锁失败(这一步是偏向锁的关键),表示在该锁对象上存在竞争并且这个时候另外一个线程获得偏向锁所有权。当到达全局安全点(safepoint)时获得偏向锁的线程被挂起,并从偏向锁所有者的私有Monitor Record列表中获取一个空闲的记录,并将Object设置LightWeight Lock状态并且Mark Word中的LockRecord指向刚才持有偏向锁线程的Monitor record,最后被阻塞在安全点的线程被释放,进入到轻量级锁的执行路径中,同时被撤销偏向锁的线程继续往下执行同步代码。


轻量级锁

引入背景:这种锁实现的背后基于这样一种假设,即在真实的情况下我们程序中的大部分同步代码一般都处于无锁竞争状态(即单线程执行环境),在无锁竞争的情况下完全可以避免调用操作系统层面的重量级互斥锁,取而代之的是在monitorenter和monitorexit中只需要依靠一条CAS原子指令就可以完成锁的获取及释放。当存在锁竞争的情况下,执行CAS指令失败的线程将调用操作系统互斥锁进入到阻塞状态,当锁被释放的时候被唤醒

加锁: 
1、当对象处于无锁状态时(RecordWord值为HashCode,状态位为001),线程首先从自己的可用moniter record列表中取得一个空闲的moniter record,初始Nest和Owner值分别被预先设置为1和该线程自己的标识,一旦monitor record准备好然后我们通过CAS原子指令安装该monitor record的起始地址到对象头的LockWord字段,如果存在其他线程竞争锁的情况而调用CAS失败,则只需要简单的回到monitorenter重新开始获取锁的过程即可。

2、对象已经被膨胀同时Owner中保存的线程标识为获取锁的线程自己,这就是重入(reentrant)锁的情况,只需要简单的将Nest加1即可。不需要任何原子操作,效率非常高。

3、对象已膨胀但Owner的值为NULL,当一个锁上存在阻塞或等待的线程同时锁的前一个拥有者刚释放锁时会出现这种状态,此时多个线程通过CAS原子指令在多线程竞争状态下试图将Owner设置为自己的标识来获得锁,竞争失败的线程在则会进入到第四种情况(4)的执行路径。

4、对象处于膨胀状态同时Owner不为NULL(被锁住),在调用操作系统的重量级的互斥锁之前先自旋一定的次数,当达到一定的次数时如果仍然没有成功获得锁,则开始准备进入阻塞状态,首先将rfThis的值原子性的加1,由于在加1的过程中可能会被其他线程破坏Object和monitor record之间的关联,所以在原子性加1后需要再进行一次比较以确保LockWord的值没有被改变,当发现被改变后则要重新monitorenter过程。同时再一次观察Owner是否为NULL,如果是则调用CAS参与竞争锁,锁竞争失败则进入到阻塞状态。


不同锁的比较



猜你喜欢

转载自blog.csdn.net/u014421556/article/details/79734703