mtk8127 bt sco 路径

https://blog.csdn.net/xiaojsj111/article/details/43447437

mtk8127 bt sco 路径

2015年02月03日 19:26:40 阅读数:2770 标签: bluetoothandroid 更多

个人分类: audioandroid linux bluetooth

1 mtk8127做蓝牙耳机时的系统框图

下面是bt sco的音频通道、音频codec、ap、modem等模块的连接框图。

下图是当mtk8127做handfree client时,bt sco的音频数据流走向(红色的中空箭头表示down link的语音数据流,紫色的中空箭头表示up link的语音数据流,)

\

bt sco音频设备在内核空间对应的设备节点为:/dev/ebc.通过misc_register系统函数来注册struct miscdevice设备。

代码路径:

2 数据结构

接收循环buffer对应的数据结构,其中蓝牙mcu子系统往这个循环buffer队列中写,对应的写下标为:iPacket_w;而驱动上层read接口,则是从这个循环buffer队列中读,对应的读下标为:iPacket_r,并且这个读写下标都不是反卷的,都是线性增长,当需要使用反卷的效果时,只需要执行如下操作即可:btsco.pRX->iPacket_w/iPacket_r & SCO_RX_PACKET_MASK

 
  1. typedef struct

  2. {

  3. kal_uint8 PacketBuf[SCO_RX_PACKER_BUF_NUM][SCO_RX_PLC_SIZE + BTSCO_CVSD_PACKET_VALID_SIZE];

  4. kal_bool PacketValid[SCO_RX_PACKER_BUF_NUM];

  5. kal_int32 iPacket_w;

  6. kal_int32 iPacket_r;

  7. kal_uint8 TempPacketBuf[BT_SCO_PACKET_180];

  8. kal_bool fOverflow;

  9. kal_uint32 u4BufferSize; //RX packetbuf size

  10. } BT_SCO_RX_T;

由于驱动read是在应用所在的线程,而蓝牙mcu子系统往这个循环buffer队列中写(对应函数:AudDrv_BTCVSD_ReadFromBT)则是在中断线程中,所以他们存在同步和竞争的关系。驱动通过如下成员来控制

  • 自旋锁:auddrv_BTCVSDRX_lock
  • 等待队列:BTCVSD_Read_Wait_Queue/BTCVSD_read_wait_queue_flag

由于是在中断中,所以必须使用spin_lock_irqsave、spin_unlock_irqrestore形式来锁住和释放该自旋锁。

类似的发送循环buffer对应的数据结构为:

 
  1. typedef struct

  2. {

  3. kal_uint8 PacketBuf[SCO_TX_PACKER_BUF_NUM][SCO_TX_ENCODE_SIZE];

  4. kal_int32 iPacket_w;

  5. kal_int32 iPacket_r;

  6. kal_uint8 TempPacketBuf[BT_SCO_PACKET_180];

  7. kal_bool fUnderflow;

  8. kal_uint32 u4BufferSize; //TX packetbuf size

  9. } BT_SCO_TX_T;

其中蓝牙的mcu子系统往这个循环buffer队列中读,对应的读下标为:iPacket_r;而驱动上层的write接口,则是从这个循环buffer队列中写,对应的写下表为:iPacket_w,同样这个读写下标都是线性增长的。当需要使用反卷的效果时,只需要执行如下操作即可:btsco.pTX->iPacket_w/iPacket_r & & SCO_TX_PACKET_MASK

由于驱动write是在应用所在的线程,而蓝牙mcu子系统从这个循环buffer队列中读(对应函数:AudDrv_BTCVSD_WriteToBT)则是在中断线程中,所以他们也存在同步和竞争的关系。驱动通过如下成员来控制

  • 自旋锁:auddrv_BTCVSDTX_lock
  • 等待队列:BTCVSD_Write_Wait_Queue/BTCVSD_write_wait_queue_flag

同样由于是在中断中,所以必须使用spin_lock_irqsave、spin_unlock_irqrestore形式来锁住和释放该自旋锁。

3 sco的接收流程

如下为read系统调用涉及的模块的数据流图,注意从receive package address register读出的地址只是一个偏移量,需要加上物理内存的开始地址对应的虚拟地址。

read的调用流程如下:

 
  1. AudDrv_btcvsd_read

  2. |------>read_size:(btsco.pRX->iPacket_w - btsco.pRX->iPacket_r) * (SCO_RX_PLC_SIZE + BTSCO_CVSD_PACKET_VALID_SIZE);

  3. |------>BTSCORX_ReadIdx_tmp:(btsco.pRX->iPacket_r & SCO_RX_PACKET_MASK) * (SCO_RX_PLC_SIZE + BTSCO_CVSD_PACKET_VALID_SIZE);

  4. |------>copy_to_user((void __user *)Read_Data_Ptr, (void *)((kal_uint8 *)btsco.pRX->PacketBuf + BTSCORX_ReadIdx_tmp), read_size)

  5. |--->wait_event_interruptible_timeout(BTCVSD_Read_Wait_Queue, BTCVSD_read_wait_queue_flag...) // if have not enough data available to read,then sleep on wait queue

中断处理中对应的read 系统调用对应的循环buffer的处理

 
  1. AudDrv_BTCVSD_IRQ_handler

  2. |---->uControl = *bt_hw_REG_CONTROL;

  3. |----> uPacketType = (uControl >> 18) & 0x7;

  4. |----> uPacketLength = (kal_uint32)btsco_PacketInfo[uPacketType][0];

  5. |---->uPacketNumber = (kal_uint32)btsco_PacketInfo[uPacketType][1];

  6. |---->uBufferCount_TX = (kal_uint32)btsco_PacketInfo[uPacketType][2];

  7. |---->uBufferCount_RX = (kal_uint32)btsco_PacketInfo[uPacketType][3];

  8. |---->AudDrv_BTCVSD_ReadFromBT(uPacketType, uPacketLength, uPacketNumber, uBufferCount_RX, uControl);

  9. |------>connsys_addr_rx = *bt_hw_REG_PACKET_R;

  10. |------>ap_addr_rx = (kal_uint32)BTSYS_SRAM_BANK2_BASE_ADDRESS + (connsys_addr_rx & 0xFFFF);

  11. |------>AudDrv_BTCVSD_DataTransfer(BT_SCO_DIRECT_BT2ARM, pSrc, btsco.pRX->TempPacketBuf, uPacketLength, uPacketNumber, btsco.uRXState);

  12. |------>memcpy(btsco.pRX->PacketBuf[btsco.pRX->iPacket_w & SCO_RX_PACKET_MASK], btsco.pRX->TempPacketBuf + (SCO_RX_PLC_SIZE * i), SCO_RX_PLC_SIZE);

  13. |------>btsco.pRX->iPacket_w++;

  14. |---->*bt_hw_REG_CONTROL &= ~BT_CVSD_CLEAR;

  15. |---->BTCVSD_read_wait_queue_flag = 1;

  16. |---->wake_up_interruptible(&BTCVSD_Read_Wait_Queue);//alread received data from BT chip, so wake up read system call function to fetch data

4 sco的发送流程

write的调用流程如下:

 
  1. AudDrv_btcvsd_write

  2. |------>copy_size = btsco.pTX->u4BufferSize - (btsco.pTX->iPacket_w - btsco.pTX->iPacket_r) * SCO_TX_ENCODE_SIZE; // free space of TX packet buffer

  3. |------>BTSCOTX_WriteIdx = (btsco.pTX->iPacket_w & SCO_TX_PACKET_MASK) * SCO_TX_ENCODE_SIZE;

  4. |------>copy_from_user((void *)((kal_uint8 *)btsco.pTX->PacketBuf + BTSCOTX_WriteIdx), (const void __user *)data_w_ptr, copy_size)

  5. |------>btsco.pTX->iPacket_w += copy_size / SCO_TX_ENCODE_SIZE;

  6. |------>BTCVSD_write_wait_queue_flag = 0;

  7. |------>wait_event_interruptible_timeout(BTCVSD_Write_Wait_Queue, BTCVSD_write_wait_queue_flag, ...)//if have not enough space available to write,then sleep on wait queue

中断处理中对应的write系统调用对应的循环buffer的处理

 
  1. AudDrv_BTCVSD_IRQ_handler

  2. |---->uControl = *bt_hw_REG_CONTROL;

  3. |---->uPacketType = (uControl >> 18) & 0x7;

  4. |---->uPacketLength = (kal_uint32)btsco_PacketInfo[uPacketType][0];

  5. |---->uPacketNumber = (kal_uint32)btsco_PacketInfo[uPacketType][1];

  6. |---->uBufferCount_TX = (kal_uint32)btsco_PacketInfo[uPacketType][2];

  7. |---->uBufferCount_RX = (kal_uint32)btsco_PacketInfo[uPacketType][3];

  8. |---->AudDrv_BTCVSD_WriteToBT

  9. |--->memcpy((void *)(btsco.pTX->TempPacketBuf + (SCO_TX_ENCODE_SIZE * i)), (void *)(btsco.pTX->PacketBuf[btsco.pTX->iPacket_r & SCO_TX_PACKET_MASK]), SCO_TX_ENCODE_SIZE);

  10. |--->btsco.pTX->iPacket_r++;

  11. |--->connsys_addr_tx = *bt_hw_REG_PACKET_W;

  12. |--->pDst= (kal_uint32)BTSYS_SRAM_BANK2_BASE_ADDRESS + (connsys_addr_tx & 0xFFFF);

  13. |--->AudDrv_BTCVSD_DataTransfer(BT_SCO_DIRECT_ARM2BT, btsco.pTX->TempPacketBuf, pDst, uPacketLength, uPacketNumber, btsco.uTXState);

  14. |----> *bt_hw_REG_CONTROL &= ~BT_CVSD_CLEAR;

  15. |---->BTCVSD_write_wait_queue_flag = 1;

  16. |---->wake_up_interruptible(&BTCVSD_Write_Wait_Queue);//already have free space for write syscall, so w

猜你喜欢

转载自blog.csdn.net/weixin_42082222/article/details/82634167
BT