谷歌开源的一个BTREE实现 Go语言

  1 // Copyright 2014 Google Inc.
  2 //
  3 // Licensed under the Apache License, Version 2.0 (the "License");
  4 // you may not use this file except in compliance with the License.
  5 // You may obtain a copy of the License at
  6 //
  7 //     http://www.apache.org/licenses/LICENSE-2.0
  8 //
  9 // Unless required by applicable law or agreed to in writing, software
 10 // distributed under the License is distributed on an "AS IS" BASIS,
 11 // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 12 // See the License for the specific language governing permissions and
 13 // limitations under the License.
 14 
 15 package btree
 16 
 17 import (
 18     "flag"
 19     "fmt"
 20     "math/rand"
 21     "reflect"
 22     "sort"
 23     "sync"
 24     "testing"
 25     "time"
 26 )
 27 
 28 func init() {
 29     seed := time.Now().Unix()
 30     fmt.Println(seed)
 31     rand.Seed(seed)
 32 }
 33 
 34 // perm returns a random permutation of n Int items in the range [0, n).
 35 func perm(n int) (out []Item) {
 36     for _, v := range rand.Perm(n) {
 37         out = append(out, Int(v))
 38     }
 39     return
 40 }
 41 
 42 // rang returns an ordered list of Int items in the range [0, n).
 43 func rang(n int) (out []Item) {
 44     for i := 0; i < n; i++ {
 45         out = append(out, Int(i))
 46     }
 47     return
 48 }
 49 
 50 // all extracts all items from a tree in order as a slice.
 51 func all(t *BTree) (out []Item) {
 52     t.Ascend(func(a Item) bool {
 53         out = append(out, a)
 54         return true
 55     })
 56     return
 57 }
 58 
 59 // rangerev returns a reversed ordered list of Int items in the range [0, n).
 60 func rangrev(n int) (out []Item) {
 61     for i := n - 1; i >= 0; i-- {
 62         out = append(out, Int(i))
 63     }
 64     return
 65 }
 66 
 67 // allrev extracts all items from a tree in reverse order as a slice.
 68 func allrev(t *BTree) (out []Item) {
 69     t.Descend(func(a Item) bool {
 70         out = append(out, a)
 71         return true
 72     })
 73     return
 74 }
 75 
 76 var btreeDegree = flag.Int("degree", 32, "B-Tree degree")
 77 
 78 func TestBTree(t *testing.T) {
 79     tr := New(*btreeDegree)
 80     const treeSize = 10000
 81     for i := 0; i < 10; i++ {
 82         if min := tr.Min(); min != nil {
 83             t.Fatalf("empty min, got %+v", min)
 84         }
 85         if max := tr.Max(); max != nil {
 86             t.Fatalf("empty max, got %+v", max)
 87         }
 88         for _, item := range perm(treeSize) {
 89             if x := tr.ReplaceOrInsert(item); x != nil {
 90                 t.Fatal("insert found item", item)
 91             }
 92         }
 93         for _, item := range perm(treeSize) {
 94             if x := tr.ReplaceOrInsert(item); x == nil {
 95                 t.Fatal("insert didn't find item", item)
 96             }
 97         }
 98         if min, want := tr.Min(), Item(Int(0)); min != want {
 99             t.Fatalf("min: want %+v, got %+v", want, min)
100         }
101         if max, want := tr.Max(), Item(Int(treeSize-1)); max != want {
102             t.Fatalf("max: want %+v, got %+v", want, max)
103         }
104         got := all(tr)
105         want := rang(treeSize)
106         if !reflect.DeepEqual(got, want) {
107             t.Fatalf("mismatch:\n got: %v\nwant: %v", got, want)
108         }
109 
110         gotrev := allrev(tr)
111         wantrev := rangrev(treeSize)
112         if !reflect.DeepEqual(gotrev, wantrev) {
113             t.Fatalf("mismatch:\n got: %v\nwant: %v", got, want)
114         }
115 
116         for _, item := range perm(treeSize) {
117             if x := tr.Delete(item); x == nil {
118                 t.Fatalf("didn't find %v", item)
119             }
120         }
121         if got = all(tr); len(got) > 0 {
122             t.Fatalf("some left!: %v", got)
123         }
124     }
125 }
126 
127 func ExampleBTree() {
128     tr := New(*btreeDegree)
129     for i := Int(0); i < 10; i++ {
130         tr.ReplaceOrInsert(i)
131     }
132     fmt.Println("len:       ", tr.Len())
133     fmt.Println("get3:      ", tr.Get(Int(3)))
134     fmt.Println("get100:    ", tr.Get(Int(100)))
135     fmt.Println("del4:      ", tr.Delete(Int(4)))
136     fmt.Println("del100:    ", tr.Delete(Int(100)))
137     fmt.Println("replace5:  ", tr.ReplaceOrInsert(Int(5)))
138     fmt.Println("replace100:", tr.ReplaceOrInsert(Int(100)))
139     fmt.Println("min:       ", tr.Min())
140     fmt.Println("delmin:    ", tr.DeleteMin())
141     fmt.Println("max:       ", tr.Max())
142     fmt.Println("delmax:    ", tr.DeleteMax())
143     fmt.Println("len:       ", tr.Len())
144     // Output:
145     // len:        10
146     // get3:       3
147     // get100:     <nil>
148     // del4:       4
149     // del100:     <nil>
150     // replace5:   5
151     // replace100: <nil>
152     // min:        0
153     // delmin:     0
154     // max:        100
155     // delmax:     100
156     // len:        8
157 }
158 
159 func TestDeleteMin(t *testing.T) {
160     tr := New(3)
161     for _, v := range perm(100) {
162         tr.ReplaceOrInsert(v)
163     }
164     var got []Item
165     for v := tr.DeleteMin(); v != nil; v = tr.DeleteMin() {
166         got = append(got, v)
167     }
168     if want := rang(100); !reflect.DeepEqual(got, want) {
169         t.Fatalf("ascendrange:\n got: %v\nwant: %v", got, want)
170     }
171 }
172 
173 func TestDeleteMax(t *testing.T) {
174     tr := New(3)
175     for _, v := range perm(100) {
176         tr.ReplaceOrInsert(v)
177     }
178     var got []Item
179     for v := tr.DeleteMax(); v != nil; v = tr.DeleteMax() {
180         got = append(got, v)
181     }
182     // Reverse our list.
183     for i := 0; i < len(got)/2; i++ {
184         got[i], got[len(got)-i-1] = got[len(got)-i-1], got[i]
185     }
186     if want := rang(100); !reflect.DeepEqual(got, want) {
187         t.Fatalf("ascendrange:\n got: %v\nwant: %v", got, want)
188     }
189 }
190 
191 func TestAscendRange(t *testing.T) {
192     tr := New(2)
193     for _, v := range perm(100) {
194         tr.ReplaceOrInsert(v)
195     }
196     var got []Item
197     tr.AscendRange(Int(40), Int(60), func(a Item) bool {
198         got = append(got, a)
199         return true
200     })
201     if want := rang(100)[40:60]; !reflect.DeepEqual(got, want) {
202         t.Fatalf("ascendrange:\n got: %v\nwant: %v", got, want)
203     }
204     got = got[:0]
205     tr.AscendRange(Int(40), Int(60), func(a Item) bool {
206         if a.(Int) > 50 {
207             return false
208         }
209         got = append(got, a)
210         return true
211     })
212     if want := rang(100)[40:51]; !reflect.DeepEqual(got, want) {
213         t.Fatalf("ascendrange:\n got: %v\nwant: %v", got, want)
214     }
215 }
216 
217 func TestDescendRange(t *testing.T) {
218     tr := New(2)
219     for _, v := range perm(100) {
220         tr.ReplaceOrInsert(v)
221     }
222     var got []Item
223     tr.DescendRange(Int(60), Int(40), func(a Item) bool {
224         got = append(got, a)
225         return true
226     })
227     if want := rangrev(100)[39:59]; !reflect.DeepEqual(got, want) {
228         t.Fatalf("descendrange:\n got: %v\nwant: %v", got, want)
229     }
230     got = got[:0]
231     tr.DescendRange(Int(60), Int(40), func(a Item) bool {
232         if a.(Int) < 50 {
233             return false
234         }
235         got = append(got, a)
236         return true
237     })
238     if want := rangrev(100)[39:50]; !reflect.DeepEqual(got, want) {
239         t.Fatalf("descendrange:\n got: %v\nwant: %v", got, want)
240     }
241 }
242 func TestAscendLessThan(t *testing.T) {
243     tr := New(*btreeDegree)
244     for _, v := range perm(100) {
245         tr.ReplaceOrInsert(v)
246     }
247     var got []Item
248     tr.AscendLessThan(Int(60), func(a Item) bool {
249         got = append(got, a)
250         return true
251     })
252     if want := rang(100)[:60]; !reflect.DeepEqual(got, want) {
253         t.Fatalf("ascendrange:\n got: %v\nwant: %v", got, want)
254     }
255     got = got[:0]
256     tr.AscendLessThan(Int(60), func(a Item) bool {
257         if a.(Int) > 50 {
258             return false
259         }
260         got = append(got, a)
261         return true
262     })
263     if want := rang(100)[:51]; !reflect.DeepEqual(got, want) {
264         t.Fatalf("ascendrange:\n got: %v\nwant: %v", got, want)
265     }
266 }
267 
268 func TestDescendLessOrEqual(t *testing.T) {
269     tr := New(*btreeDegree)
270     for _, v := range perm(100) {
271         tr.ReplaceOrInsert(v)
272     }
273     var got []Item
274     tr.DescendLessOrEqual(Int(40), func(a Item) bool {
275         got = append(got, a)
276         return true
277     })
278     if want := rangrev(100)[59:]; !reflect.DeepEqual(got, want) {
279         t.Fatalf("descendlessorequal:\n got: %v\nwant: %v", got, want)
280     }
281     got = got[:0]
282     tr.DescendLessOrEqual(Int(60), func(a Item) bool {
283         if a.(Int) < 50 {
284             return false
285         }
286         got = append(got, a)
287         return true
288     })
289     if want := rangrev(100)[39:50]; !reflect.DeepEqual(got, want) {
290         t.Fatalf("descendlessorequal:\n got: %v\nwant: %v", got, want)
291     }
292 }
293 func TestAscendGreaterOrEqual(t *testing.T) {
294     tr := New(*btreeDegree)
295     for _, v := range perm(100) {
296         tr.ReplaceOrInsert(v)
297     }
298     var got []Item
299     tr.AscendGreaterOrEqual(Int(40), func(a Item) bool {
300         got = append(got, a)
301         return true
302     })
303     if want := rang(100)[40:]; !reflect.DeepEqual(got, want) {
304         t.Fatalf("ascendrange:\n got: %v\nwant: %v", got, want)
305     }
306     got = got[:0]
307     tr.AscendGreaterOrEqual(Int(40), func(a Item) bool {
308         if a.(Int) > 50 {
309             return false
310         }
311         got = append(got, a)
312         return true
313     })
314     if want := rang(100)[40:51]; !reflect.DeepEqual(got, want) {
315         t.Fatalf("ascendrange:\n got: %v\nwant: %v", got, want)
316     }
317 }
318 
319 func TestDescendGreaterThan(t *testing.T) {
320     tr := New(*btreeDegree)
321     for _, v := range perm(100) {
322         tr.ReplaceOrInsert(v)
323     }
324     var got []Item
325     tr.DescendGreaterThan(Int(40), func(a Item) bool {
326         got = append(got, a)
327         return true
328     })
329     if want := rangrev(100)[:59]; !reflect.DeepEqual(got, want) {
330         t.Fatalf("descendgreaterthan:\n got: %v\nwant: %v", got, want)
331     }
332     got = got[:0]
333     tr.DescendGreaterThan(Int(40), func(a Item) bool {
334         if a.(Int) < 50 {
335             return false
336         }
337         got = append(got, a)
338         return true
339     })
340     if want := rangrev(100)[:50]; !reflect.DeepEqual(got, want) {
341         t.Fatalf("descendgreaterthan:\n got: %v\nwant: %v", got, want)
342     }
343 }
344 
345 const benchmarkTreeSize = 10000
346 
347 func BenchmarkInsert(b *testing.B) {
348     b.StopTimer()
349     insertP := perm(benchmarkTreeSize)
350     b.StartTimer()
351     i := 0
352     for i < b.N {
353         tr := New(*btreeDegree)
354         for _, item := range insertP {
355             tr.ReplaceOrInsert(item)
356             i++
357             if i >= b.N {
358                 return
359             }
360         }
361     }
362 }
363 
364 func BenchmarkSeek(b *testing.B) {
365     b.StopTimer()
366     size := 100000
367     insertP := perm(size)
368     tr := New(*btreeDegree)
369     for _, item := range insertP {
370         tr.ReplaceOrInsert(item)
371     }
372     b.StartTimer()
373 
374     for i := 0; i < b.N; i++ {
375         tr.AscendGreaterOrEqual(Int(i%size), func(i Item) bool { return false })
376     }
377 }
378 
379 func BenchmarkDeleteInsert(b *testing.B) {
380     b.StopTimer()
381     insertP := perm(benchmarkTreeSize)
382     tr := New(*btreeDegree)
383     for _, item := range insertP {
384         tr.ReplaceOrInsert(item)
385     }
386     b.StartTimer()
387     for i := 0; i < b.N; i++ {
388         tr.Delete(insertP[i%benchmarkTreeSize])
389         tr.ReplaceOrInsert(insertP[i%benchmarkTreeSize])
390     }
391 }
392 
393 func BenchmarkDeleteInsertCloneOnce(b *testing.B) {
394     b.StopTimer()
395     insertP := perm(benchmarkTreeSize)
396     tr := New(*btreeDegree)
397     for _, item := range insertP {
398         tr.ReplaceOrInsert(item)
399     }
400     tr = tr.Clone()
401     b.StartTimer()
402     for i := 0; i < b.N; i++ {
403         tr.Delete(insertP[i%benchmarkTreeSize])
404         tr.ReplaceOrInsert(insertP[i%benchmarkTreeSize])
405     }
406 }
407 
408 func BenchmarkDeleteInsertCloneEachTime(b *testing.B) {
409     b.StopTimer()
410     insertP := perm(benchmarkTreeSize)
411     tr := New(*btreeDegree)
412     for _, item := range insertP {
413         tr.ReplaceOrInsert(item)
414     }
415     b.StartTimer()
416     for i := 0; i < b.N; i++ {
417         tr = tr.Clone()
418         tr.Delete(insertP[i%benchmarkTreeSize])
419         tr.ReplaceOrInsert(insertP[i%benchmarkTreeSize])
420     }
421 }
422 
423 func BenchmarkDelete(b *testing.B) {
424     b.StopTimer()
425     insertP := perm(benchmarkTreeSize)
426     removeP := perm(benchmarkTreeSize)
427     b.StartTimer()
428     i := 0
429     for i < b.N {
430         b.StopTimer()
431         tr := New(*btreeDegree)
432         for _, v := range insertP {
433             tr.ReplaceOrInsert(v)
434         }
435         b.StartTimer()
436         for _, item := range removeP {
437             tr.Delete(item)
438             i++
439             if i >= b.N {
440                 return
441             }
442         }
443         if tr.Len() > 0 {
444             panic(tr.Len())
445         }
446     }
447 }
448 
449 func BenchmarkGet(b *testing.B) {
450     b.StopTimer()
451     insertP := perm(benchmarkTreeSize)
452     removeP := perm(benchmarkTreeSize)
453     b.StartTimer()
454     i := 0
455     for i < b.N {
456         b.StopTimer()
457         tr := New(*btreeDegree)
458         for _, v := range insertP {
459             tr.ReplaceOrInsert(v)
460         }
461         b.StartTimer()
462         for _, item := range removeP {
463             tr.Get(item)
464             i++
465             if i >= b.N {
466                 return
467             }
468         }
469     }
470 }
471 
472 func BenchmarkGetCloneEachTime(b *testing.B) {
473     b.StopTimer()
474     insertP := perm(benchmarkTreeSize)
475     removeP := perm(benchmarkTreeSize)
476     b.StartTimer()
477     i := 0
478     for i < b.N {
479         b.StopTimer()
480         tr := New(*btreeDegree)
481         for _, v := range insertP {
482             tr.ReplaceOrInsert(v)
483         }
484         b.StartTimer()
485         for _, item := range removeP {
486             tr = tr.Clone()
487             tr.Get(item)
488             i++
489             if i >= b.N {
490                 return
491             }
492         }
493     }
494 }
495 
496 type byInts []Item
497 
498 func (a byInts) Len() int {
499     return len(a)
500 }
501 
502 func (a byInts) Less(i, j int) bool {
503     return a[i].(Int) < a[j].(Int)
504 }
505 
506 func (a byInts) Swap(i, j int) {
507     a[i], a[j] = a[j], a[i]
508 }
509 
510 func BenchmarkAscend(b *testing.B) {
511     arr := perm(benchmarkTreeSize)
512     tr := New(*btreeDegree)
513     for _, v := range arr {
514         tr.ReplaceOrInsert(v)
515     }
516     sort.Sort(byInts(arr))
517     b.ResetTimer()
518     for i := 0; i < b.N; i++ {
519         j := 0
520         tr.Ascend(func(item Item) bool {
521             if item.(Int) != arr[j].(Int) {
522                 b.Fatalf("mismatch: expected: %v, got %v", arr[j].(Int), item.(Int))
523             }
524             j++
525             return true
526         })
527     }
528 }
529 
530 func BenchmarkDescend(b *testing.B) {
531     arr := perm(benchmarkTreeSize)
532     tr := New(*btreeDegree)
533     for _, v := range arr {
534         tr.ReplaceOrInsert(v)
535     }
536     sort.Sort(byInts(arr))
537     b.ResetTimer()
538     for i := 0; i < b.N; i++ {
539         j := len(arr) - 1
540         tr.Descend(func(item Item) bool {
541             if item.(Int) != arr[j].(Int) {
542                 b.Fatalf("mismatch: expected: %v, got %v", arr[j].(Int), item.(Int))
543             }
544             j--
545             return true
546         })
547     }
548 }
549 func BenchmarkAscendRange(b *testing.B) {
550     arr := perm(benchmarkTreeSize)
551     tr := New(*btreeDegree)
552     for _, v := range arr {
553         tr.ReplaceOrInsert(v)
554     }
555     sort.Sort(byInts(arr))
556     b.ResetTimer()
557     for i := 0; i < b.N; i++ {
558         j := 100
559         tr.AscendRange(Int(100), arr[len(arr)-100], func(item Item) bool {
560             if item.(Int) != arr[j].(Int) {
561                 b.Fatalf("mismatch: expected: %v, got %v", arr[j].(Int), item.(Int))
562             }
563             j++
564             return true
565         })
566         if j != len(arr)-100 {
567             b.Fatalf("expected: %v, got %v", len(arr)-100, j)
568         }
569     }
570 }
571 
572 func BenchmarkDescendRange(b *testing.B) {
573     arr := perm(benchmarkTreeSize)
574     tr := New(*btreeDegree)
575     for _, v := range arr {
576         tr.ReplaceOrInsert(v)
577     }
578     sort.Sort(byInts(arr))
579     b.ResetTimer()
580     for i := 0; i < b.N; i++ {
581         j := len(arr) - 100
582         tr.DescendRange(arr[len(arr)-100], Int(100), func(item Item) bool {
583             if item.(Int) != arr[j].(Int) {
584                 b.Fatalf("mismatch: expected: %v, got %v", arr[j].(Int), item.(Int))
585             }
586             j--
587             return true
588         })
589         if j != 100 {
590             b.Fatalf("expected: %v, got %v", len(arr)-100, j)
591         }
592     }
593 }
594 func BenchmarkAscendGreaterOrEqual(b *testing.B) {
595     arr := perm(benchmarkTreeSize)
596     tr := New(*btreeDegree)
597     for _, v := range arr {
598         tr.ReplaceOrInsert(v)
599     }
600     sort.Sort(byInts(arr))
601     b.ResetTimer()
602     for i := 0; i < b.N; i++ {
603         j := 100
604         k := 0
605         tr.AscendGreaterOrEqual(Int(100), func(item Item) bool {
606             if item.(Int) != arr[j].(Int) {
607                 b.Fatalf("mismatch: expected: %v, got %v", arr[j].(Int), item.(Int))
608             }
609             j++
610             k++
611             return true
612         })
613         if j != len(arr) {
614             b.Fatalf("expected: %v, got %v", len(arr), j)
615         }
616         if k != len(arr)-100 {
617             b.Fatalf("expected: %v, got %v", len(arr)-100, k)
618         }
619     }
620 }
621 func BenchmarkDescendLessOrEqual(b *testing.B) {
622     arr := perm(benchmarkTreeSize)
623     tr := New(*btreeDegree)
624     for _, v := range arr {
625         tr.ReplaceOrInsert(v)
626     }
627     sort.Sort(byInts(arr))
628     b.ResetTimer()
629     for i := 0; i < b.N; i++ {
630         j := len(arr) - 100
631         k := len(arr)
632         tr.DescendLessOrEqual(arr[len(arr)-100], func(item Item) bool {
633             if item.(Int) != arr[j].(Int) {
634                 b.Fatalf("mismatch: expected: %v, got %v", arr[j].(Int), item.(Int))
635             }
636             j--
637             k--
638             return true
639         })
640         if j != -1 {
641             b.Fatalf("expected: %v, got %v", -1, j)
642         }
643         if k != 99 {
644             b.Fatalf("expected: %v, got %v", 99, k)
645         }
646     }
647 }
648 
649 const cloneTestSize = 10000
650 
651 func cloneTest(t *testing.T, b *BTree, start int, p []Item, wg *sync.WaitGroup, trees *[]*BTree) {
652     t.Logf("Starting new clone at %v", start)
653     *trees = append(*trees, b)
654     for i := start; i < cloneTestSize; i++ {
655         b.ReplaceOrInsert(p[i])
656         if i%(cloneTestSize/5) == 0 {
657             wg.Add(1)
658             go cloneTest(t, b.Clone(), i+1, p, wg, trees)
659         }
660     }
661     wg.Done()
662 }
663 
664 func TestCloneConcurrentOperations(t *testing.T) {
665     b := New(*btreeDegree)
666     trees := []*BTree{}
667     p := perm(cloneTestSize)
668     var wg sync.WaitGroup
669     wg.Add(1)
670     go cloneTest(t, b, 0, p, &wg, &trees)
671     wg.Wait()
672     want := rang(cloneTestSize)
673     t.Logf("Starting equality checks on %d trees", len(trees))
674     for i, tree := range trees {
675         if !reflect.DeepEqual(want, all(tree)) {
676             t.Errorf("tree %v mismatch", i)
677         }
678     }
679     t.Log("Removing half from first half")
680     toRemove := rang(cloneTestSize)[cloneTestSize/2:]
681     for i := 0; i < len(trees)/2; i++ {
682         tree := trees[i]
683         wg.Add(1)
684         go func() {
685             for _, item := range toRemove {
686                 tree.Delete(item)
687             }
688             wg.Done()
689         }()
690     }
691     wg.Wait()
692     t.Log("Checking all values again")
693     for i, tree := range trees {
694         var wantpart []Item
695         if i < len(trees)/2 {
696             wantpart = want[:cloneTestSize/2]
697         } else {
698             wantpart = want
699         }
700         if got := all(tree); !reflect.DeepEqual(wantpart, got) {
701             t.Errorf("tree %v mismatch, want %v got %v", i, len(want), len(got))
702         }
703     }
704 }
705 
706 func BenchmarkDeleteAndRestore(b *testing.B) {
707     items := perm(16392)
708     b.ResetTimer()
709     b.Run(`CopyBigFreeList`, func(b *testing.B) {
710         fl := NewFreeList(16392)
711         tr := NewWithFreeList(*btreeDegree, fl)
712         for _, v := range items {
713             tr.ReplaceOrInsert(v)
714         }
715         b.ReportAllocs()
716         b.ResetTimer()
717         for i := 0; i < b.N; i++ {
718             dels := make([]Item, 0, tr.Len())
719             tr.Ascend(ItemIterator(func(b Item) bool {
720                 dels = append(dels, b)
721                 return true
722             }))
723             for _, del := range dels {
724                 tr.Delete(del)
725             }
726             // tr is now empty, we make a new empty copy of it.
727             tr = NewWithFreeList(*btreeDegree, fl)
728             for _, v := range items {
729                 tr.ReplaceOrInsert(v)
730             }
731         }
732     })
733     b.Run(`Copy`, func(b *testing.B) {
734         tr := New(*btreeDegree)
735         for _, v := range items {
736             tr.ReplaceOrInsert(v)
737         }
738         b.ReportAllocs()
739         b.ResetTimer()
740         for i := 0; i < b.N; i++ {
741             dels := make([]Item, 0, tr.Len())
742             tr.Ascend(ItemIterator(func(b Item) bool {
743                 dels = append(dels, b)
744                 return true
745             }))
746             for _, del := range dels {
747                 tr.Delete(del)
748             }
749             // tr is now empty, we make a new empty copy of it.
750             tr = New(*btreeDegree)
751             for _, v := range items {
752                 tr.ReplaceOrInsert(v)
753             }
754         }
755     })
756     b.Run(`ClearBigFreelist`, func(b *testing.B) {
757         fl := NewFreeList(16392)
758         tr := NewWithFreeList(*btreeDegree, fl)
759         for _, v := range items {
760             tr.ReplaceOrInsert(v)
761         }
762         b.ReportAllocs()
763         b.ResetTimer()
764         for i := 0; i < b.N; i++ {
765             tr.Clear(true)
766             for _, v := range items {
767                 tr.ReplaceOrInsert(v)
768             }
769         }
770     })
771     b.Run(`Clear`, func(b *testing.B) {
772         tr := New(*btreeDegree)
773         for _, v := range items {
774             tr.ReplaceOrInsert(v)
775         }
776         b.ReportAllocs()
777         b.ResetTimer()
778         for i := 0; i < b.N; i++ {
779             tr.Clear(true)
780             for _, v := range items {
781                 tr.ReplaceOrInsert(v)
782             }
783         }
784     })
785 }
btree_test.go
 1 // Copyright 2014 Google Inc.
 2 //
 3 // Licensed under the Apache License, Version 2.0 (the "License");
 4 // you may not use this file except in compliance with the License.
 5 // You may obtain a copy of the License at
 6 //
 7 //     http://www.apache.org/licenses/LICENSE-2.0
 8 //
 9 // Unless required by applicable law or agreed to in writing, software
10 // distributed under the License is distributed on an "AS IS" BASIS,
11 // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12 // See the License for the specific language governing permissions and
13 // limitations under the License.
14 
15 // +build ignore
16 
17 // This binary compares memory usage between btree and gollrb.
18 package main
19 
20 import (
21     "flag"
22     "fmt"
23     "math/rand"
24     "runtime"
25     "time"
26 
27     "github.com/google/btree"
28     "github.com/petar/GoLLRB/llrb"
29 )
30 
31 var (
32     size   = flag.Int("size", 1000000, "size of the tree to build")
33     degree = flag.Int("degree", 8, "degree of btree")
34     gollrb = flag.Bool("llrb", false, "use llrb instead of btree")
35 )
36 
37 func main() {
38     flag.Parse()
39     vals := rand.Perm(*size)
40     var t, v interface{}
41     v = vals
42     var stats runtime.MemStats
43     for i := 0; i < 10; i++ {
44         runtime.GC()
45     }
46     fmt.Println("-------- BEFORE ----------")
47     runtime.ReadMemStats(&stats)
48     fmt.Printf("%+v\n", stats)
49     start := time.Now()
50     if *gollrb {
51         tr := llrb.New()
52         for _, v := range vals {
53             tr.ReplaceOrInsert(llrb.Int(v))
54         }
55         t = tr // keep it around
56     } else {
57         tr := btree.New(*degree)
58         for _, v := range vals {
59             tr.ReplaceOrInsert(btree.Int(v))
60         }
61         t = tr // keep it around
62     }
63     fmt.Printf("%v inserts in %v\n", *size, time.Since(start))
64     fmt.Println("-------- AFTER ----------")
65     runtime.ReadMemStats(&stats)
66     fmt.Printf("%+v\n", stats)
67     for i := 0; i < 10; i++ {
68         runtime.GC()
69     }
70     fmt.Println("-------- AFTER GC ----------")
71     runtime.ReadMemStats(&stats)
72     fmt.Printf("%+v\n", stats)
73     if t == v {
74         fmt.Println("to make sure vals and tree aren't GC'd")
75     }
76 }
btree_mem.go
  1 // Copyright 2014 Google Inc.
  2 //
  3 // Licensed under the Apache License, Version 2.0 (the "License");
  4 // you may not use this file except in compliance with the License.
  5 // You may obtain a copy of the License at
  6 //
  7 //     http://www.apache.org/licenses/LICENSE-2.0
  8 //
  9 // Unless required by applicable law or agreed to in writing, software
 10 // distributed under the License is distributed on an "AS IS" BASIS,
 11 // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 12 // See the License for the specific language governing permissions and
 13 // limitations under the License.
 14 
 15 // Package btree implements in-memory B-Trees of arbitrary degree.
 16 //
 17 // btree implements an in-memory B-Tree for use as an ordered data structure.
 18 // It is not meant for persistent storage solutions.
 19 //
 20 // It has a flatter structure than an equivalent red-black or other binary tree,
 21 // which in some cases yields better memory usage and/or performance.
 22 // See some discussion on the matter here:
 23 //   http://google-opensource.blogspot.com/2013/01/c-containers-that-save-memory-and-time.html
 24 // Note, though, that this project is in no way related to the C++ B-Tree
 25 // implementation written about there.
 26 //
 27 // Within this tree, each node contains a slice of items and a (possibly nil)
 28 // slice of children.  For basic numeric values or raw structs, this can cause
 29 // efficiency differences when compared to equivalent C++ template code that
 30 // stores values in arrays within the node:
 31 //   * Due to the overhead of storing values as interfaces (each
 32 //     value needs to be stored as the value itself, then 2 words for the
 33 //     interface pointing to that value and its type), resulting in higher
 34 //     memory use.
 35 //   * Since interfaces can point to values anywhere in memory, values are
 36 //     most likely not stored in contiguous blocks, resulting in a higher
 37 //     number of cache misses.
 38 // These issues don't tend to matter, though, when working with strings or other
 39 // heap-allocated structures, since C++-equivalent structures also must store
 40 // pointers and also distribute their values across the heap.
 41 //
 42 // This implementation is designed to be a drop-in replacement to gollrb.LLRB
 43 // trees, (http://github.com/petar/gollrb), an excellent and probably the most
 44 // widely used ordered tree implementation in the Go ecosystem currently.
 45 // Its functions, therefore, exactly mirror those of
 46 // llrb.LLRB where possible.  Unlike gollrb, though, we currently don't
 47 // support storing multiple equivalent values.
 48 package btree
 49 
 50 import (
 51     "fmt"
 52     "io"
 53     "sort"
 54     "strings"
 55     "sync"
 56 )
 57 
 58 // Item represents a single object in the tree.
 59 type Item interface {
 60     // Less tests whether the current item is less than the given argument.
 61     //
 62     // This must provide a strict weak ordering.
 63     // If !a.Less(b) && !b.Less(a), we treat this to mean a == b (i.e. we can only
 64     // hold one of either a or b in the tree).
 65     Less(than Item) bool
 66 }
 67 
 68 const (
 69     DefaultFreeListSize = 32
 70 )
 71 
 72 var (
 73     nilItems    = make(items, 16)
 74     nilChildren = make(children, 16)
 75 )
 76 
 77 // FreeList represents a free list of btree nodes. By default each
 78 // BTree has its own FreeList, but multiple BTrees can share the same
 79 // FreeList.
 80 // Two Btrees using the same freelist are safe for concurrent write access.
 81 type FreeList struct {
 82     mu       sync.Mutex
 83     freelist []*node
 84 }
 85 
 86 // NewFreeList creates a new free list.
 87 // size is the maximum size of the returned free list.
 88 func NewFreeList(size int) *FreeList {
 89     return &FreeList{freelist: make([]*node, 0, size)}
 90 }
 91 
 92 func (f *FreeList) newNode() (n *node) {
 93     f.mu.Lock()
 94     index := len(f.freelist) - 1
 95     if index < 0 {
 96         f.mu.Unlock()
 97         return new(node)
 98     }
 99     n = f.freelist[index]
100     f.freelist[index] = nil
101     f.freelist = f.freelist[:index]
102     f.mu.Unlock()
103     return
104 }
105 
106 // freeNode adds the given node to the list, returning true if it was added
107 // and false if it was discarded.
108 func (f *FreeList) freeNode(n *node) (out bool) {
109     f.mu.Lock()
110     if len(f.freelist) < cap(f.freelist) {
111         f.freelist = append(f.freelist, n)
112         out = true
113     }
114     f.mu.Unlock()
115     return
116 }
117 
118 // ItemIterator allows callers of Ascend* to iterate in-order over portions of
119 // the tree.  When this function returns false, iteration will stop and the
120 // associated Ascend* function will immediately return.
121 type ItemIterator func(i Item) bool
122 
123 // New creates a new B-Tree with the given degree.
124 //
125 // New(2), for example, will create a 2-3-4 tree (each node contains 1-3 items
126 // and 2-4 children).
127 func New(degree int) *BTree {
128     return NewWithFreeList(degree, NewFreeList(DefaultFreeListSize))
129 }
130 
131 // NewWithFreeList creates a new B-Tree that uses the given node free list.
132 func NewWithFreeList(degree int, f *FreeList) *BTree {
133     if degree <= 1 {
134         panic("bad degree")
135     }
136     return &BTree{
137         degree: degree,
138         cow:    &copyOnWriteContext{freelist: f},
139     }
140 }
141 
142 // items stores items in a node.
143 type items []Item
144 
145 // insertAt inserts a value into the given index, pushing all subsequent values
146 // forward.
147 func (s *items) insertAt(index int, item Item) {
148     *s = append(*s, nil)
149     if index < len(*s) {
150         copy((*s)[index+1:], (*s)[index:])
151     }
152     (*s)[index] = item
153 }
154 
155 // removeAt removes a value at a given index, pulling all subsequent values
156 // back.
157 func (s *items) removeAt(index int) Item {
158     item := (*s)[index]
159     copy((*s)[index:], (*s)[index+1:])
160     (*s)[len(*s)-1] = nil
161     *s = (*s)[:len(*s)-1]
162     return item
163 }
164 
165 // pop removes and returns the last element in the list.
166 func (s *items) pop() (out Item) {
167     index := len(*s) - 1
168     out = (*s)[index]
169     (*s)[index] = nil
170     *s = (*s)[:index]
171     return
172 }
173 
174 // truncate truncates this instance at index so that it contains only the
175 // first index items. index must be less than or equal to length.
176 func (s *items) truncate(index int) {
177     var toClear items
178     *s, toClear = (*s)[:index], (*s)[index:]
179     for len(toClear) > 0 {
180         toClear = toClear[copy(toClear, nilItems):]
181     }
182 }
183 
184 // find returns the index where the given item should be inserted into this
185 // list.  'found' is true if the item already exists in the list at the given
186 // index.
187 func (s items) find(item Item) (index int, found bool) {
188     i := sort.Search(len(s), func(i int) bool {
189         return item.Less(s[i])
190     })
191     if i > 0 && !s[i-1].Less(item) {
192         return i - 1, true
193     }
194     return i, false
195 }
196 
197 // children stores child nodes in a node.
198 type children []*node
199 
200 // insertAt inserts a value into the given index, pushing all subsequent values
201 // forward.
202 func (s *children) insertAt(index int, n *node) {
203     *s = append(*s, nil)
204     if index < len(*s) {
205         copy((*s)[index+1:], (*s)[index:])
206     }
207     (*s)[index] = n
208 }
209 
210 // removeAt removes a value at a given index, pulling all subsequent values
211 // back.
212 func (s *children) removeAt(index int) *node {
213     n := (*s)[index]
214     copy((*s)[index:], (*s)[index+1:])
215     (*s)[len(*s)-1] = nil
216     *s = (*s)[:len(*s)-1]
217     return n
218 }
219 
220 // pop removes and returns the last element in the list.
221 func (s *children) pop() (out *node) {
222     index := len(*s) - 1
223     out = (*s)[index]
224     (*s)[index] = nil
225     *s = (*s)[:index]
226     return
227 }
228 
229 // truncate truncates this instance at index so that it contains only the
230 // first index children. index must be less than or equal to length.
231 func (s *children) truncate(index int) {
232     var toClear children
233     *s, toClear = (*s)[:index], (*s)[index:]
234     for len(toClear) > 0 {
235         toClear = toClear[copy(toClear, nilChildren):]
236     }
237 }
238 
239 // node is an internal node in a tree.
240 //
241 // It must at all times maintain the invariant that either
242 //   * len(children) == 0, len(items) unconstrained
243 //   * len(children) == len(items) + 1
244 type node struct {
245     items    items
246     children children
247     cow      *copyOnWriteContext
248 }
249 
250 func (n *node) mutableFor(cow *copyOnWriteContext) *node {
251     if n.cow == cow {
252         return n
253     }
254     out := cow.newNode()
255     if cap(out.items) >= len(n.items) {
256         out.items = out.items[:len(n.items)]
257     } else {
258         out.items = make(items, len(n.items), cap(n.items))
259     }
260     copy(out.items, n.items)
261     // Copy children
262     if cap(out.children) >= len(n.children) {
263         out.children = out.children[:len(n.children)]
264     } else {
265         out.children = make(children, len(n.children), cap(n.children))
266     }
267     copy(out.children, n.children)
268     return out
269 }
270 
271 func (n *node) mutableChild(i int) *node {
272     c := n.children[i].mutableFor(n.cow)
273     n.children[i] = c
274     return c
275 }
276 
277 // split splits the given node at the given index.  The current node shrinks,
278 // and this function returns the item that existed at that index and a new node
279 // containing all items/children after it.
280 func (n *node) split(i int) (Item, *node) {
281     item := n.items[i]
282     next := n.cow.newNode()
283     next.items = append(next.items, n.items[i+1:]...)
284     n.items.truncate(i)
285     if len(n.children) > 0 {
286         next.children = append(next.children, n.children[i+1:]...)
287         n.children.truncate(i + 1)
288     }
289     return item, next
290 }
291 
292 // maybeSplitChild checks if a child should be split, and if so splits it.
293 // Returns whether or not a split occurred.
294 func (n *node) maybeSplitChild(i, maxItems int) bool {
295     if len(n.children[i].items) < maxItems {
296         return false
297     }
298     first := n.mutableChild(i)
299     item, second := first.split(maxItems / 2)
300     n.items.insertAt(i, item)
301     n.children.insertAt(i+1, second)
302     return true
303 }
304 
305 // insert inserts an item into the subtree rooted at this node, making sure
306 // no nodes in the subtree exceed maxItems items.  Should an equivalent item be
307 // be found/replaced by insert, it will be returned.
308 func (n *node) insert(item Item, maxItems int) Item {
309     i, found := n.items.find(item)
310     if found {
311         out := n.items[i]
312         n.items[i] = item
313         return out
314     }
315     if len(n.children) == 0 {
316         n.items.insertAt(i, item)
317         return nil
318     }
319     if n.maybeSplitChild(i, maxItems) {
320         inTree := n.items[i]
321         switch {
322         case item.Less(inTree):
323             // no change, we want first split node
324         case inTree.Less(item):
325             i++ // we want second split node
326         default:
327             out := n.items[i]
328             n.items[i] = item
329             return out
330         }
331     }
332     return n.mutableChild(i).insert(item, maxItems)
333 }
334 
335 // get finds the given key in the subtree and returns it.
336 func (n *node) get(key Item) Item {
337     i, found := n.items.find(key)
338     if found {
339         return n.items[i]
340     } else if len(n.children) > 0 {
341         return n.children[i].get(key)
342     }
343     return nil
344 }
345 
346 // min returns the first item in the subtree.
347 func min(n *node) Item {
348     if n == nil {
349         return nil
350     }
351     for len(n.children) > 0 {
352         n = n.children[0]
353     }
354     if len(n.items) == 0 {
355         return nil
356     }
357     return n.items[0]
358 }
359 
360 // max returns the last item in the subtree.
361 func max(n *node) Item {
362     if n == nil {
363         return nil
364     }
365     for len(n.children) > 0 {
366         n = n.children[len(n.children)-1]
367     }
368     if len(n.items) == 0 {
369         return nil
370     }
371     return n.items[len(n.items)-1]
372 }
373 
374 // toRemove details what item to remove in a node.remove call.
375 type toRemove int
376 
377 const (
378     removeItem toRemove = iota // removes the given item
379     removeMin                  // removes smallest item in the subtree
380     removeMax                  // removes largest item in the subtree
381 )
382 
383 // remove removes an item from the subtree rooted at this node.
384 func (n *node) remove(item Item, minItems int, typ toRemove) Item {
385     var i int
386     var found bool
387     switch typ {
388     case removeMax:
389         if len(n.children) == 0 {
390             return n.items.pop()
391         }
392         i = len(n.items)
393     case removeMin:
394         if len(n.children) == 0 {
395             return n.items.removeAt(0)
396         }
397         i = 0
398     case removeItem:
399         i, found = n.items.find(item)
400         if len(n.children) == 0 {
401             if found {
402                 return n.items.removeAt(i)
403             }
404             return nil
405         }
406     default:
407         panic("invalid type")
408     }
409     // If we get to here, we have children.
410     if len(n.children[i].items) <= minItems {
411         return n.growChildAndRemove(i, item, minItems, typ)
412     }
413     child := n.mutableChild(i)
414     // Either we had enough items to begin with, or we've done some
415     // merging/stealing, because we've got enough now and we're ready to return
416     // stuff.
417     if found {
418         // The item exists at index 'i', and the child we've selected can give us a
419         // predecessor, since if we've gotten here it's got > minItems items in it.
420         out := n.items[i]
421         // We use our special-case 'remove' call with typ=maxItem to pull the
422         // predecessor of item i (the rightmost leaf of our immediate left child)
423         // and set it into where we pulled the item from.
424         n.items[i] = child.remove(nil, minItems, removeMax)
425         return out
426     }
427     // Final recursive call.  Once we're here, we know that the item isn't in this
428     // node and that the child is big enough to remove from.
429     return child.remove(item, minItems, typ)
430 }
431 
432 // growChildAndRemove grows child 'i' to make sure it's possible to remove an
433 // item from it while keeping it at minItems, then calls remove to actually
434 // remove it.
435 //
436 // Most documentation says we have to do two sets of special casing:
437 //   1) item is in this node
438 //   2) item is in child
439 // In both cases, we need to handle the two subcases:
440 //   A) node has enough values that it can spare one
441 //   B) node doesn't have enough values
442 // For the latter, we have to check:
443 //   a) left sibling has node to spare
444 //   b) right sibling has node to spare
445 //   c) we must merge
446 // To simplify our code here, we handle cases #1 and #2 the same:
447 // If a node doesn't have enough items, we make sure it does (using a,b,c).
448 // We then simply redo our remove call, and the second time (regardless of
449 // whether we're in case 1 or 2), we'll have enough items and can guarantee
450 // that we hit case A.
451 func (n *node) growChildAndRemove(i int, item Item, minItems int, typ toRemove) Item {
452     if i > 0 && len(n.children[i-1].items) > minItems {
453         // Steal from left child
454         child := n.mutableChild(i)
455         stealFrom := n.mutableChild(i - 1)
456         stolenItem := stealFrom.items.pop()
457         child.items.insertAt(0, n.items[i-1])
458         n.items[i-1] = stolenItem
459         if len(stealFrom.children) > 0 {
460             child.children.insertAt(0, stealFrom.children.pop())
461         }
462     } else if i < len(n.items) && len(n.children[i+1].items) > minItems {
463         // steal from right child
464         child := n.mutableChild(i)
465         stealFrom := n.mutableChild(i + 1)
466         stolenItem := stealFrom.items.removeAt(0)
467         child.items = append(child.items, n.items[i])
468         n.items[i] = stolenItem
469         if len(stealFrom.children) > 0 {
470             child.children = append(child.children, stealFrom.children.removeAt(0))
471         }
472     } else {
473         if i >= len(n.items) {
474             i--
475         }
476         child := n.mutableChild(i)
477         // merge with right child
478         mergeItem := n.items.removeAt(i)
479         mergeChild := n.children.removeAt(i + 1)
480         child.items = append(child.items, mergeItem)
481         child.items = append(child.items, mergeChild.items...)
482         child.children = append(child.children, mergeChild.children...)
483         n.cow.freeNode(mergeChild)
484     }
485     return n.remove(item, minItems, typ)
486 }
487 
488 type direction int
489 
490 const (
491     descend = direction(-1)
492     ascend  = direction(+1)
493 )
494 
495 // iterate provides a simple method for iterating over elements in the tree.
496 //
497 // When ascending, the 'start' should be less than 'stop' and when descending,
498 // the 'start' should be greater than 'stop'. Setting 'includeStart' to true
499 // will force the iterator to include the first item when it equals 'start',
500 // thus creating a "greaterOrEqual" or "lessThanEqual" rather than just a
501 // "greaterThan" or "lessThan" queries.
502 func (n *node) iterate(dir direction, start, stop Item, includeStart bool, hit bool, iter ItemIterator) (bool, bool) {
503     var ok, found bool
504     var index int
505     switch dir {
506     case ascend:
507         if start != nil {
508             index, _ = n.items.find(start)
509         }
510         for i := index; i < len(n.items); i++ {
511             if len(n.children) > 0 {
512                 if hit, ok = n.children[i].iterate(dir, start, stop, includeStart, hit, iter); !ok {
513                     return hit, false
514                 }
515             }
516             if !includeStart && !hit && start != nil && !start.Less(n.items[i]) {
517                 hit = true
518                 continue
519             }
520             hit = true
521             if stop != nil && !n.items[i].Less(stop) {
522                 return hit, false
523             }
524             if !iter(n.items[i]) {
525                 return hit, false
526             }
527         }
528         if len(n.children) > 0 {
529             if hit, ok = n.children[len(n.children)-1].iterate(dir, start, stop, includeStart, hit, iter); !ok {
530                 return hit, false
531             }
532         }
533     case descend:
534         if start != nil {
535             index, found = n.items.find(start)
536             if !found {
537                 index = index - 1
538             }
539         } else {
540             index = len(n.items) - 1
541         }
542         for i := index; i >= 0; i-- {
543             if start != nil && !n.items[i].Less(start) {
544                 if !includeStart || hit || start.Less(n.items[i]) {
545                     continue
546                 }
547             }
548             if len(n.children) > 0 {
549                 if hit, ok = n.children[i+1].iterate(dir, start, stop, includeStart, hit, iter); !ok {
550                     return hit, false
551                 }
552             }
553             if stop != nil && !stop.Less(n.items[i]) {
554                 return hit, false //    continue
555             }
556             hit = true
557             if !iter(n.items[i]) {
558                 return hit, false
559             }
560         }
561         if len(n.children) > 0 {
562             if hit, ok = n.children[0].iterate(dir, start, stop, includeStart, hit, iter); !ok {
563                 return hit, false
564             }
565         }
566     }
567     return hit, true
568 }
569 
570 // Used for testing/debugging purposes.
571 func (n *node) print(w io.Writer, level int) {
572     fmt.Fprintf(w, "%sNODE:%v\n", strings.Repeat("  ", level), n.items)
573     for _, c := range n.children {
574         c.print(w, level+1)
575     }
576 }
577 
578 // BTree is an implementation of a B-Tree.
579 //
580 // BTree stores Item instances in an ordered structure, allowing easy insertion,
581 // removal, and iteration.
582 //
583 // Write operations are not safe for concurrent mutation by multiple
584 // goroutines, but Read operations are.
585 type BTree struct {
586     degree int
587     length int
588     root   *node
589     cow    *copyOnWriteContext
590 }
591 
592 // copyOnWriteContext pointers determine node ownership... a tree with a write
593 // context equivalent to a node's write context is allowed to modify that node.
594 // A tree whose write context does not match a node's is not allowed to modify
595 // it, and must create a new, writable copy (IE: it's a Clone).
596 //
597 // When doing any write operation, we maintain the invariant that the current
598 // node's context is equal to the context of the tree that requested the write.
599 // We do this by, before we descend into any node, creating a copy with the
600 // correct context if the contexts don't match.
601 //
602 // Since the node we're currently visiting on any write has the requesting
603 // tree's context, that node is modifiable in place.  Children of that node may
604 // not share context, but before we descend into them, we'll make a mutable
605 // copy.
606 type copyOnWriteContext struct {
607     freelist *FreeList
608 }
609 
610 // Clone clones the btree, lazily.  Clone should not be called concurrently,
611 // but the original tree (t) and the new tree (t2) can be used concurrently
612 // once the Clone call completes.
613 //
614 // The internal tree structure of b is marked read-only and shared between t and
615 // t2.  Writes to both t and t2 use copy-on-write logic, creating new nodes
616 // whenever one of b's original nodes would have been modified.  Read operations
617 // should have no performance degredation.  Write operations for both t and t2
618 // will initially experience minor slow-downs caused by additional allocs and
619 // copies due to the aforementioned copy-on-write logic, but should converge to
620 // the original performance characteristics of the original tree.
621 func (t *BTree) Clone() (t2 *BTree) {
622     // Create two entirely new copy-on-write contexts.
623     // This operation effectively creates three trees:
624     //   the original, shared nodes (old b.cow)
625     //   the new b.cow nodes
626     //   the new out.cow nodes
627     cow1, cow2 := *t.cow, *t.cow
628     out := *t
629     t.cow = &cow1
630     out.cow = &cow2
631     return &out
632 }
633 
634 // maxItems returns the max number of items to allow per node.
635 func (t *BTree) maxItems() int {
636     return t.degree*2 - 1
637 }
638 
639 // minItems returns the min number of items to allow per node (ignored for the
640 // root node).
641 func (t *BTree) minItems() int {
642     return t.degree - 1
643 }
644 
645 func (c *copyOnWriteContext) newNode() (n *node) {
646     n = c.freelist.newNode()
647     n.cow = c
648     return
649 }
650 
651 type freeType int
652 
653 const (
654     ftFreelistFull freeType = iota // node was freed (available for GC, not stored in freelist)
655     ftStored                       // node was stored in the freelist for later use
656     ftNotOwned                     // node was ignored by COW, since it's owned by another one
657 )
658 
659 // freeNode frees a node within a given COW context, if it's owned by that
660 // context.  It returns what happened to the node (see freeType const
661 // documentation).
662 func (c *copyOnWriteContext) freeNode(n *node) freeType {
663     if n.cow == c {
664         // clear to allow GC
665         n.items.truncate(0)
666         n.children.truncate(0)
667         n.cow = nil
668         if c.freelist.freeNode(n) {
669             return ftStored
670         } else {
671             return ftFreelistFull
672         }
673     } else {
674         return ftNotOwned
675     }
676 }
677 
678 // ReplaceOrInsert adds the given item to the tree.  If an item in the tree
679 // already equals the given one, it is removed from the tree and returned.
680 // Otherwise, nil is returned.
681 //
682 // nil cannot be added to the tree (will panic).
683 func (t *BTree) ReplaceOrInsert(item Item) Item {
684     if item == nil {
685         panic("nil item being added to BTree")
686     }
687     if t.root == nil {
688         t.root = t.cow.newNode()
689         t.root.items = append(t.root.items, item)
690         t.length++
691         return nil
692     } else {
693         t.root = t.root.mutableFor(t.cow)
694         if len(t.root.items) >= t.maxItems() {
695             item2, second := t.root.split(t.maxItems() / 2)
696             oldroot := t.root
697             t.root = t.cow.newNode()
698             t.root.items = append(t.root.items, item2)
699             t.root.children = append(t.root.children, oldroot, second)
700         }
701     }
702     out := t.root.insert(item, t.maxItems())
703     if out == nil {
704         t.length++
705     }
706     return out
707 }
708 
709 // Delete removes an item equal to the passed in item from the tree, returning
710 // it.  If no such item exists, returns nil.
711 func (t *BTree) Delete(item Item) Item {
712     return t.deleteItem(item, removeItem)
713 }
714 
715 // DeleteMin removes the smallest item in the tree and returns it.
716 // If no such item exists, returns nil.
717 func (t *BTree) DeleteMin() Item {
718     return t.deleteItem(nil, removeMin)
719 }
720 
721 // DeleteMax removes the largest item in the tree and returns it.
722 // If no such item exists, returns nil.
723 func (t *BTree) DeleteMax() Item {
724     return t.deleteItem(nil, removeMax)
725 }
726 
727 func (t *BTree) deleteItem(item Item, typ toRemove) Item {
728     if t.root == nil || len(t.root.items) == 0 {
729         return nil
730     }
731     t.root = t.root.mutableFor(t.cow)
732     out := t.root.remove(item, t.minItems(), typ)
733     if len(t.root.items) == 0 && len(t.root.children) > 0 {
734         oldroot := t.root
735         t.root = t.root.children[0]
736         t.cow.freeNode(oldroot)
737     }
738     if out != nil {
739         t.length--
740     }
741     return out
742 }
743 
744 // AscendRange calls the iterator for every value in the tree within the range
745 // [greaterOrEqual, lessThan), until iterator returns false.
746 func (t *BTree) AscendRange(greaterOrEqual, lessThan Item, iterator ItemIterator) {
747     if t.root == nil {
748         return
749     }
750     t.root.iterate(ascend, greaterOrEqual, lessThan, true, false, iterator)
751 }
752 
753 // AscendLessThan calls the iterator for every value in the tree within the range
754 // [first, pivot), until iterator returns false.
755 func (t *BTree) AscendLessThan(pivot Item, iterator ItemIterator) {
756     if t.root == nil {
757         return
758     }
759     t.root.iterate(ascend, nil, pivot, false, false, iterator)
760 }
761 
762 // AscendGreaterOrEqual calls the iterator for every value in the tree within
763 // the range [pivot, last], until iterator returns false.
764 func (t *BTree) AscendGreaterOrEqual(pivot Item, iterator ItemIterator) {
765     if t.root == nil {
766         return
767     }
768     t.root.iterate(ascend, pivot, nil, true, false, iterator)
769 }
770 
771 // Ascend calls the iterator for every value in the tree within the range
772 // [first, last], until iterator returns false.
773 func (t *BTree) Ascend(iterator ItemIterator) {
774     if t.root == nil {
775         return
776     }
777     t.root.iterate(ascend, nil, nil, false, false, iterator)
778 }
779 
780 // DescendRange calls the iterator for every value in the tree within the range
781 // [lessOrEqual, greaterThan), until iterator returns false.
782 func (t *BTree) DescendRange(lessOrEqual, greaterThan Item, iterator ItemIterator) {
783     if t.root == nil {
784         return
785     }
786     t.root.iterate(descend, lessOrEqual, greaterThan, true, false, iterator)
787 }
788 
789 // DescendLessOrEqual calls the iterator for every value in the tree within the range
790 // [pivot, first], until iterator returns false.
791 func (t *BTree) DescendLessOrEqual(pivot Item, iterator ItemIterator) {
792     if t.root == nil {
793         return
794     }
795     t.root.iterate(descend, pivot, nil, true, false, iterator)
796 }
797 
798 // DescendGreaterThan calls the iterator for every value in the tree within
799 // the range (pivot, last], until iterator returns false.
800 func (t *BTree) DescendGreaterThan(pivot Item, iterator ItemIterator) {
801     if t.root == nil {
802         return
803     }
804     t.root.iterate(descend, nil, pivot, false, false, iterator)
805 }
806 
807 // Descend calls the iterator for every value in the tree within the range
808 // [last, first], until iterator returns false.
809 func (t *BTree) Descend(iterator ItemIterator) {
810     if t.root == nil {
811         return
812     }
813     t.root.iterate(descend, nil, nil, false, false, iterator)
814 }
815 
816 // Get looks for the key item in the tree, returning it.  It returns nil if
817 // unable to find that item.
818 func (t *BTree) Get(key Item) Item {
819     if t.root == nil {
820         return nil
821     }
822     return t.root.get(key)
823 }
824 
825 // Min returns the smallest item in the tree, or nil if the tree is empty.
826 func (t *BTree) Min() Item {
827     return min(t.root)
828 }
829 
830 // Max returns the largest item in the tree, or nil if the tree is empty.
831 func (t *BTree) Max() Item {
832     return max(t.root)
833 }
834 
835 // Has returns true if the given key is in the tree.
836 func (t *BTree) Has(key Item) bool {
837     return t.Get(key) != nil
838 }
839 
840 // Len returns the number of items currently in the tree.
841 func (t *BTree) Len() int {
842     return t.length
843 }
844 
845 // Clear removes all items from the btree.  If addNodesToFreelist is true,
846 // t's nodes are added to its freelist as part of this call, until the freelist
847 // is full.  Otherwise, the root node is simply dereferenced and the subtree
848 // left to Go's normal GC processes.
849 //
850 // This can be much faster
851 // than calling Delete on all elements, because that requires finding/removing
852 // each element in the tree and updating the tree accordingly.  It also is
853 // somewhat faster than creating a new tree to replace the old one, because
854 // nodes from the old tree are reclaimed into the freelist for use by the new
855 // one, instead of being lost to the garbage collector.
856 //
857 // This call takes:
858 //   O(1): when addNodesToFreelist is false, this is a single operation.
859 //   O(1): when the freelist is already full, it breaks out immediately
860 //   O(freelist size):  when the freelist is empty and the nodes are all owned
861 //       by this tree, nodes are added to the freelist until full.
862 //   O(tree size):  when all nodes are owned by another tree, all nodes are
863 //       iterated over looking for nodes to add to the freelist, and due to
864 //       ownership, none are.
865 func (t *BTree) Clear(addNodesToFreelist bool) {
866     if t.root != nil && addNodesToFreelist {
867         t.root.reset(t.cow)
868     }
869     t.root, t.length = nil, 0
870 }
871 
872 // reset returns a subtree to the freelist.  It breaks out immediately if the
873 // freelist is full, since the only benefit of iterating is to fill that
874 // freelist up.  Returns true if parent reset call should continue.
875 func (n *node) reset(c *copyOnWriteContext) bool {
876     for _, child := range n.children {
877         if !child.reset(c) {
878             return false
879         }
880     }
881     return c.freeNode(n) != ftFreelistFull
882 }
883 
884 // Int implements the Item interface for integers.
885 type Int int
886 
887 // Less returns true if int(a) < int(b).
888 func (a Int) Less(b Item) bool {
889     return a < b.(Int)
890 }
btree.go

猜你喜欢

转载自www.cnblogs.com/itdef/p/9641058.html