f(x)=(xTMx)/(xTx),M是实对称正定矩阵,则函数的最大和最小值分别为M的最大和最小特征值

Solution: 

由于x^{T}Mx是一个二次型,M一般表示为实对称矩阵,进而M对应于不同特征值的特征向量相互正交。因为

Mx_{1}=\lambda_{1} x_{1}, Mx_{2}=\lambda_{2} x_{2}

x_{2}^TMx_{1}=\lambda_{1}x_{2}^T x_{1},

\because M=M^T, \therefore x_{1}^TMx_{2}=\lambda_{1}x_{1}^T x_{2},

Meanwhile, x_{1}^TMx_{2}=\lambda_{2} x_{1}^T x_{2}, \therefore (\lambda_{1}-\lambda_{2})x_{1}^T x_{2}=0,

\because \lambda_{1}\neq \lambda_{2}, \therefore x_{1}^T x_{2}=0. \: \!

因此可以将所有特征向量作为线性空间的一组基底,记为x_{i}^*, i=1,2,...,n,满足

\begin{multiline} (x_{i}^{*}, x_{j}^{*})=0, if\, i\neq j,\\ &Mx_{i}^* = \lambda _{i} x_{i}^*} \end{multiline}

这里\left ( a, b \right )表示向量a, b的点乘运算。

则对于向量x,可以表示为x=\sum_{i=1}^{n}\alpha _{i} x_{i}^*,显然x^Tx=\sum_{i=1}^{n}\alpha _{i}^{2}x_{i}^{*}^{2}, 而分子

\begin{multiline} x^TMx=(x, Mx)\\ =(\sum_{i=1}^{n}\alpha _{i} x_{i}^*, M\sum_{i=1}^{n}\alpha _{i} x_{i}^*)\\ =(\sum_{i=1}^{n}\alpha _{i} x_{i}^*, \sum_{i=1}^{n}\alpha _{i}M x_{i}^*)\\ =(\sum_{i=1}^{n}\alpha _{i} x_{i}^*, \sum_{i=1}^{n}\alpha _{i} \lambda _{i} x_{i}^*)\\ =\sum_{i=1}^{n}\lambda_{i}\alpha _{i}^{2} x_{i}^*^{2} \end{multiline}

\because \underline {\lambda} \leq \lambda _{i} \leq \overline{\lambda}

\therefore \underline{\lambda}\sum_{i=1}^{n}\alpha _{i}^{2} x_{i}^*^{2}\leq x^TMx \leq \overline{\lambda}\sum_{i=1}^{n}\alpha _{i}^{2} x_{i}^*^{2},

\therefore \underline {\lambda} \leq f(x) \leq \overline{\lambda}.\, \qed

猜你喜欢

转载自blog.csdn.net/qq_27061325/article/details/82585270