生产者消费者模式的实现(java实现)




前言

生产者消费者问题是线程模型中的经典问题:生产者和消费者在同一时间段内共用同一存储空间,生产者向空间里生产数据,而消费者取走数据。

阻塞队列就相当于一个缓冲区,平衡了生产者和消费者的处理能力。这个阻塞队列就是用来给生产者和消费者解耦的。

wait/notify方法

首先,我们搞清楚Thread.sleep()方法和Object.wait()、Object.notify()方法的区别。根据这篇文章java sleep和wait的区别的疑惑?

  1. sleep()是Thread类的方法;而wait()notify()notifyAll()是Object类中定义的方法;尽管这两个方法都会影响线程的执行行为,但是本质上是有区别的。

  2. Thread.sleep()不会导致锁行为的改变,如果当前线程是拥有锁的,那么Thread.sleep()不会让线程释放锁。如果能够帮助你记忆的话,可以简单认为和锁相关的方法都定义在Object类中,因此调用Thread.sleep()是不会影响锁的相关行为。

  3. Thread.sleepObject.wait都会暂停当前的线程,对于CPU资源来说,不管是哪种方式暂停的线程,都表示它暂时不再需要CPU的执行时间。OS会将执行时间分配给其它线程。区别是调用wait后,需要别的线程执行notify/notifyAll才能够重新获得CPU执行时间。

线程状态图:

  • Thread.sleep()让线程从 【running】 -> 【阻塞态】 时间结束/interrupt -> 【runnable】
  • Object.wait()让线程从 【running】 -> 【等待队列】notify -> 【锁池】 -> 【runnable】

实现生产者消费者模型

生产者消费者问题是研究多线程程序时绕不开的经典问题之一,它描述是有一块缓冲区作为仓库,生产者可以将产品放入仓库,消费者则可以从仓库中取走产品。在Java中一共有四种方法支持同步,其中前三个是同步方法,一个是管道方法。

(1)Object的wait() / notify()方法
(2)LockCondition的await() / signal()方法
(3)BlockingQueue阻塞队列方法
(4)PipedInputStream / PipedOutputStream

本文只介绍最常用的前三种,第四种暂不做讨论。源代码在这里:Java实现生产者消费者模型

1. 使用Object的wait() / notify()方法

wait()/ nofity()方法是基类Object的两个方法,也就意味着所有Java类都会拥有这两个方法,这样,我们就可以为任何对象实现同步机制。

  • wait():当缓冲区已满/空时,生产者/消费者线程停止自己的执行,放弃锁,使自己处于等待状态,让其他线程执行。
  • notify():当生产者/消费者向缓冲区放入/取出一个产品时,向其他等待的线程发出可执行的通知,同时放弃锁,使自己处于等待状态。
/**
 * 生产者消费者模式:使用Object.wait() / notify()方法实现
 */
public class ProducerConsumer {
    private static final int CAPACITY = 5;

    public static void main(String args[]){
        Queue<Integer> queue = new LinkedList<Integer>();

        Thread producer1 = new Producer("P-1", queue, CAPACITY);
        Thread producer2 = new Producer("P-2", queue, CAPACITY);
        Thread consumer1 = new Consumer("C1", queue, CAPACITY);
        Thread consumer2 = new Consumer("C2", queue, CAPACITY);
        Thread consumer3 = new Consumer("C3", queue, CAPACITY);

        producer1.start();
        producer2.start();
        consumer1.start();
        consumer2.start();
        consumer3.start();
    }

    /**
     * 生产者
     */
    public static class Producer extends Thread{
        private Queue<Integer> queue;
        String name;
        int maxSize;
        int i = 0;

        public Producer(String name, Queue<Integer> queue, int maxSize){
            super(name);
            this.name = name;
            this.queue = queue;
            this.maxSize = maxSize;
        }

        @Override
        public void run(){
            while(true){
                synchronized(queue){
                    while(queue.size() == maxSize){
                        try {
                            System.out .println("Queue is full, Producer[" + name + "] thread waiting for " + "consumer to take something from queue.");
                            queue.wait();
                        } catch (Exception ex) {
                            ex.printStackTrace();
                        }
                    }
                    System.out.println("[" + name + "] Producing value : +" + i);
                    queue.offer(i++);
                    queue.notifyAll();

                    try {
                        Thread.sleep(new Random().nextInt(1000));
                    } catch (InterruptedException e) {
                        e.printStackTrace();
                    }
                }
            }

        }
    }

    /**
     * 消费者
     */
    public static class Consumer extends Thread{
        private Queue<Integer> queue;
        String name;
        int maxSize;

        public Consumer(String name, Queue<Integer> queue, int maxSize){
            super(name);
            this.name = name;
            this.queue = queue;
            this.maxSize = maxSize;
        }

        @Override
        public void run(){
            while(true){
                synchronized(queue){
                    while(queue.isEmpty()){
                        try {
                            System.out.println("Queue is empty, Consumer[" + name + "] thread is waiting for Producer");
                            queue.wait();
                        } catch (Exception ex) {
                            ex.printStackTrace();
                        }
                    }
                    int x = queue.poll();
                    System.out.println("[" + name + "] Consuming value : " + x);
                    queue.notifyAll();

                    try {
                        Thread.sleep(new Random().nextInt(1000));
                    } catch (InterruptedException e) {
                        e.printStackTrace();
                    }
                }
            }
        }
    }
}
  
  
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
  • 43
  • 44
  • 45
  • 46
  • 47
  • 48
  • 49
  • 50
  • 51
  • 52
  • 53
  • 54
  • 55
  • 56
  • 57
  • 58
  • 59
  • 60
  • 61
  • 62
  • 63
  • 64
  • 65
  • 66
  • 67
  • 68
  • 69
  • 70
  • 71
  • 72
  • 73
  • 74
  • 75
  • 76
  • 77
  • 78
  • 79
  • 80
  • 81
  • 82
  • 83
  • 84
  • 85
  • 86
  • 87
  • 88
  • 89
  • 90
  • 91
  • 92
  • 93
  • 94
  • 95
  • 96
  • 97
  • 98
  • 99
  • 100
  • 101
  • 102
  • 103
  • 104
  • 105
  • 106
注意要点

判断Queue大小为0或者大于等于queueSize时须使用 while (condition) {},不能使用 if(condition) {}。其中 while(condition)循环,它又被叫做“自旋锁”。自旋锁以及wait()notify()方法在线程通信这篇文章中有更加详细的介绍。为防止该线程没有收到notify()调用也从wait()中返回(也称作虚假唤醒),这个线程会重新去检查condition条件以决定当前是否可以安全地继续执行还是需要重新保持等待,而不是认为线程被唤醒了就可以安全地继续执行了。

输出日志如下:

[P-1] Producing value : +0
[P-1] Producing value : +1
[P-1] Producing value : +2
[P-1] Producing value : +3
[P-1] Producing value : +4
Queue is full, Producer[P-1] thread waiting for consumer to take something from queue.
[C3] Consuming value : 0
[C3] Consuming value : 1
[C3] Consuming value : 2
[C3] Consuming value : 3
[C3] Consuming value : 4
Queue is empty, Consumer[C3] thread is waiting for Producer
Queue is empty, Consumer[C2] thread is waiting for Producer
Queue is empty, Consumer[C1] thread is waiting for Producer
[P-2] Producing value : +0
[C1] Consuming value : 0
Queue is empty, Consumer[C1] thread is waiting for Producer
Queue is empty, Consumer[C2] thread is waiting for Producer
Queue is empty, Consumer[C3] thread is waiting for Producer
[P-1] Producing value : +5
[P-1] Producing value : +6
[P-1] Producing value : +7
[P-1] Producing value : +8
[P-1] Producing value : +9
Queue is full, Producer[P-1] thread waiting for consumer to take something from queue.
[C3] Consuming value : 5
[C3] Consuming value : 6
[C3] Consuming value : 7
[C3] Consuming value : 8
[C3] Consuming value : 9
Queue is empty, Consumer[C3] thread is waiting for Producer
Queue is empty, Consumer[C2] thread is waiting for Producer
Queue is empty, Consumer[C1] thread is waiting for Producer
[P-2] Producing value : +1
[C1] Consuming value : 1
Queue is empty, Consumer[C1] thread is waiting for Producer
Queue is empty, Consumer[C2] thread is waiting for Producer
Queue is empty, Consumer[C3] thread is waiting for Producer
[P-1] Producing value : +10
[P-1] Producing value : +11
[P-1] Producing value : +12
[P-1] Producing value : +13
[P-1] Producing value : +14
Queue is full, Producer[P-1] thread waiting for consumer to take something from queue.
[C3] Consuming value : 10
[C3] Consuming value : 11
[C3] Consuming value : 12
[C3] Consuming value : 13
[C3] Consuming value : 14
Queue is empty, Consumer[C3] thread is waiting for Producer
Queue is empty, Consumer[C2] thread is waiting for Producer
Queue is empty, Consumer[C1] thread is waiting for Producer
[P-2] Producing value : +2
[P-2] Producing value : +3
[P-2] Producing value : +4
[P-2] Producing value : +5
[P-2] Producing value : +6
Queue is full, Producer[P-2] thread waiting for consumer to take something from queue.
[C1] Consuming value : 2
[C1] Consuming value : 3
[C1] Consuming value : 4
[C1] Consuming value : 5
[C1] Consuming value : 6
Queue is empty, Consumer[C1] thread is waiting for Producer
Queue is empty, Consumer[C2] thread is waiting for Producer
Queue is empty, Consumer[C3] thread is waiting for Producer
[P-1] Producing value : +15
[C3] Consuming value : 15
Queue is empty, Consumer[C3] thread is waiting for Producer
Queue is empty, Consumer[C2] thread is waiting for Producer
Queue is empty, Consumer[C1] thread is waiting for Producer
[P-2] Producing value : +7
[P-2] Producing value : +8
[P-2] Producing value : +9
  
  
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
  • 43
  • 44
  • 45
  • 46
  • 47
  • 48
  • 49
  • 50
  • 51
  • 52
  • 53
  • 54
  • 55
  • 56
  • 57
  • 58
  • 59
  • 60
  • 61
  • 62
  • 63
  • 64
  • 65
  • 66
  • 67
  • 68
  • 69
  • 70
  • 71
  • 72
  • 73
  • 74

2. 使用Lock和Condition的await() / signal()方法

在JDK5.0之后,Java提供了更加健壮的线程处理机制,包括同步、锁定、线程池等,它们可以实现更细粒度的线程控制。Condition接口的await()signal()就是其中用来做同步的两种方法,它们的功能基本上和Object的wait()/ nofity()相同,完全可以取代它们,但是它们和新引入的锁定机制Lock直接挂钩,具有更大的灵活性。通过在Lock对象上调用newCondition()方法,将条件变量和一个锁对象进行绑定,进而控制并发程序访问竞争资源的安全。下面来看代码:

/**
 * 生产者消费者模式:使用Lock和Condition实现
 * {@link java.util.concurrent.locks.Lock}
 * {@link java.util.concurrent.locks.Condition}
 */
public class ProducerConsumerByLock {
    private static final int CAPACITY = 5;
    private static final Lock lock = new ReentrantLock();
    private static final Condition fullCondition = lock.newCondition();     //队列满的条件
    private static final Condition emptyCondition = lock.newCondition();        //队列空的条件


    public static void main(String args[]){
        Queue<Integer> queue = new LinkedList<Integer>();

        Thread producer1 = new Producer("P-1", queue, CAPACITY);
        Thread producer2 = new Producer("P-2", queue, CAPACITY);
        Thread consumer1 = new Consumer("C1", queue, CAPACITY);
        Thread consumer2 = new Consumer("C2", queue, CAPACITY);
        Thread consumer3 = new Consumer("C3", queue, CAPACITY);

        producer1.start();
        producer2.start();
        consumer1.start();
        consumer2.start();
        consumer3.start();
    }

    /**
     * 生产者
     */
    public static class Producer extends Thread{
        private Queue<Integer> queue;
        String name;
        int maxSize;
        int i = 0;

        public Producer(String name, Queue<Integer> queue, int maxSize){
            super(name);
            this.name = name;
            this.queue = queue;
            this.maxSize = maxSize;
        }

        @Override
        public void run(){
            while(true){

                //获得锁
                lock.lock();
                while(queue.size() == maxSize){
                    try {
                        System.out .println("Queue is full, Producer[" + name + "] thread waiting for " + "consumer to take something from queue.");
                        //条件不满足,生产阻塞
                        fullCondition.await();
                    } catch (InterruptedException ex) {
                        ex.printStackTrace();
                    }
                }
                System.out.println("[" + name + "] Producing value : +" + i);
                queue.offer(i++);

                //唤醒其他所有生产者、消费者
                fullCondition.signalAll();
                emptyCondition.signalAll();

                //释放锁
                lock.unlock();

                try {
                    Thread.sleep(new Random().nextInt(1000));
                } catch (InterruptedException e) {
                    e.printStackTrace();
                }
            }

        }
    }

    /**
     * 消费者
     */
    public static class Consumer extends Thread{
        private Queue<Integer> queue;
        String name;
        int maxSize;

        public Consumer(String name, Queue<Integer> queue, int maxSize){
            super(name);
            this.name = name;
            this.queue = queue;
            this.maxSize = maxSize;
        }

        @Override
        public void run(){
            while(true){
                //获得锁
                lock.lock();

                while(queue.isEmpty()){
                    try {
                        System.out.println("Queue is empty, Consumer[" + name + "] thread is waiting for Producer");
                        //条件不满足,消费阻塞
                        emptyCondition.await();
                    } catch (Exception ex) {
                        ex.printStackTrace();
                    }
                }
                int x = queue.poll();
                System.out.println("[" + name + "] Consuming value : " + x);

                //唤醒其他所有生产者、消费者
                fullCondition.signalAll();
                emptyCondition.signalAll();

                //释放锁
                lock.unlock();

                try {
                    Thread.sleep(new Random().nextInt(1000));
                } catch (InterruptedException e) {
                    e.printStackTrace();
                }
            }
        }
    }
}
  
  
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
  • 43
  • 44
  • 45
  • 46
  • 47
  • 48
  • 49
  • 50
  • 51
  • 52
  • 53
  • 54
  • 55
  • 56
  • 57
  • 58
  • 59
  • 60
  • 61
  • 62
  • 63
  • 64
  • 65
  • 66
  • 67
  • 68
  • 69
  • 70
  • 71
  • 72
  • 73
  • 74
  • 75
  • 76
  • 77
  • 78
  • 79
  • 80
  • 81
  • 82
  • 83
  • 84
  • 85
  • 86
  • 87
  • 88
  • 89
  • 90
  • 91
  • 92
  • 93
  • 94
  • 95
  • 96
  • 97
  • 98
  • 99
  • 100
  • 101
  • 102
  • 103
  • 104
  • 105
  • 106
  • 107
  • 108
  • 109
  • 110
  • 111
  • 112
  • 113
  • 114
  • 115
  • 116
  • 117
  • 118
  • 119
  • 120
  • 121
  • 122
  • 123
  • 124
  • 125
  • 126
  • 127
  • 128

输入日志如下:

[P-1] Producing value : +0
[C1] Consuming value : 0
Queue is empty, Consumer[C3] thread is waiting for Producer
Queue is empty, Consumer[C2] thread is waiting for Producer
[P-2] Producing value : +0
[C3] Consuming value : 0
Queue is empty, Consumer[C2] thread is waiting for Producer
Queue is empty, Consumer[C1] thread is waiting for Producer
[P-2] Producing value : +1
[C2] Consuming value : 1
Queue is empty, Consumer[C1] thread is waiting for Producer
Queue is empty, Consumer[C3] thread is waiting for Producer
[P-1] Producing value : +1
[C1] Consuming value : 1
Queue is empty, Consumer[C3] thread is waiting for Producer
[P-1] Producing value : +2
[C3] Consuming value : 2
Queue is empty, Consumer[C2] thread is waiting for Producer
[P-2] Producing value : +2
[C2] Consuming value : 2
Queue is empty, Consumer[C1] thread is waiting for Producer
Queue is empty, Consumer[C2] thread is waiting for Producer
[P-1] Producing value : +3
[C1] Consuming value : 3
Queue is empty, Consumer[C2] thread is waiting for Producer
Queue is empty, Consumer[C1] thread is waiting for Producer
Queue is empty, Consumer[C3] thread is waiting for Producer
[P-2] Producing value : +3
[C2] Consuming value : 3
Queue is empty, Consumer[C1] thread is waiting for Producer
Queue is empty, Consumer[C3] thread is waiting for Producer
Queue is empty, Consumer[C2] thread is waiting for Producer
[P-1] Producing value : +4
[C1] Consuming value : 4
Queue is empty, Consumer[C3] thread is waiting for Producer
Queue is empty, Consumer[C2] thread is waiting for Producer
Queue is empty, Consumer[C1] thread is waiting for Producer
[P-2] Producing value : +4
[C3] Consuming value : 4
Queue is empty, Consumer[C2] thread is waiting for Producer
Queue is empty, Consumer[C1] thread is waiting for Producer
[P-2] Producing value : +5
[C2] Consuming value : 5
Queue is empty, Consumer[C1] thread is waiting for Producer
Queue is empty, Consumer[C2] thread is waiting for Producer
[P-1] Producing value : +5
[C1] Consuming value : 5
Queue is empty, Consumer[C2] thread is waiting for Producer
Queue is empty, Consumer[C3] thread is waiting for Producer
[P-2] Producing value : +6
[C2] Consuming value : 6
Queue is empty, Consumer[C3] thread is waiting for Producer
[P-1] Producing value : +6
[C3] Consuming value : 6
Queue is empty, Consumer[C3] thread is waiting for Producer
Queue is empty, Consumer[C1] thread is waiting for Producer
[P-2] Producing value : +7
[C3] Consuming value : 7
Queue is empty, Consumer[C1] thread is waiting for Producer
[P-1] Producing value : +7
[C1] Consuming value : 7
Queue is empty, Consumer[C2] thread is waiting for Producer
[P-2] Producing value : +8
[C2] Consuming value : 8
[P-1] Producing value : +8
[C1] Consuming value : 8
[P-2] Producing value : +9
[C3] Consuming value : 9
[P-2] Producing value : +10
[C2] Consuming value : 10
[P-1] Producing value : +9
[P-1] Producing value : +10
[C1] Consuming value : 9
[P-2] Producing value : +11
[C3] Consuming value : 10
[C2] Consuming value : 11
[P-2] Producing value : +12
[C1] Consuming value : 12
[P-1] Producing value : +11
[C3] Consuming value : 11
[P-2] Producing value : +13
[C2] Consuming value : 13
Queue is empty, Consumer[C2] thread is waiting for Producer
Queue is empty, Consumer[C3] thread is waiting for Producer
[P-1] Producing value : +12
[C2] Consuming value : 12
Queue is empty, Consumer[C3] thread is waiting for Producer
[P-1] Producing value : +13
[C3] Consuming value : 13
Queue is empty, Consumer[C1] thread is waiting for Producer
Queue is empty, Consumer[C3] thread is waiting for Producer
[P-2] Producing value : +14
[C1] Consuming value : 14
Queue is empty, Consumer[C3] thread is waiting for Producer
Queue is empty, Consumer[C1] thread is waiting for Producer
[P-1] Producing value : +14
[C3] Consuming value : 14
Queue is empty, Consumer[C1] thread is waiting for Producer
[P-1] Producing value : +15
[C1] Consuming value : 15
[P-2] Producing value : +15
[P-1] Producing value : +16
[C3] Consuming value : 15
[P-2] Producing value : +16
  
  
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
  • 43
  • 44
  • 45
  • 46
  • 47
  • 48
  • 49
  • 50
  • 51
  • 52
  • 53
  • 54
  • 55
  • 56
  • 57
  • 58
  • 59
  • 60
  • 61
  • 62
  • 63
  • 64
  • 65
  • 66
  • 67
  • 68
  • 69
  • 70
  • 71
  • 72
  • 73
  • 74
  • 75
  • 76
  • 77
  • 78
  • 79
  • 80
  • 81
  • 82
  • 83
  • 84
  • 85
  • 86
  • 87
  • 88
  • 89
  • 90
  • 91
  • 92
  • 93
  • 94
  • 95
  • 96
  • 97
  • 98
  • 99
  • 100
  • 101
  • 102
  • 103
  • 104

3. 使用BlockingQueue阻塞队列方法

JDK 1.5 以后新增的 java.util.concurrent包新增了 BlockingQueue 接口。并提供了如下几种阻塞队列实现:

  • java.util.concurrent.ArrayBlockingQueue
  • java.util.concurrent.LinkedBlockingQueue
  • java.util.concurrent.SynchronousQueue
  • java.util.concurrent.PriorityBlockingQueue

实现生产者-消费者模型使用 ArrayBlockingQueue或者 LinkedBlockingQueue即可。

我们这里使用LinkedBlockingQueue,它是一个已经在内部实现了同步的队列,实现方式采用的是我们第2种await()/ signal()方法。它可以在生成对象时指定容量大小。它用于阻塞操作的是put()和take()方法。

  • put()方法:类似于我们上面的生产者线程,容量达到最大时,自动阻塞。
  • take()方法:类似于我们上面的消费者线程,容量为0时,自动阻塞。

我们可以跟进源码看一下LinkedBlockingQueue类的put()方法实现:

/** Main lock guarding all access */
final ReentrantLock lock = new ReentrantLock();

/** Condition for waiting takes */
private final Condition notEmpty = lock.newCondition();

/** Condition for waiting puts */
private final Condition notFull = lock.newCondition();



public void put(E e) throws InterruptedException {
    putLast(e);
}

public void putLast(E e) throws InterruptedException {
    if (e == null) throw new NullPointerException();
    Node<E> node = new Node<E>(e);
    final ReentrantLock lock = this.lock;
    lock.lock();
    try {
        while (!linkLast(node))
            notFull.await();
    } finally {
        lock.unlock();
    }
}
  
  
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27

看到这里证实了它的实现方式采用的是我们第2种await()/ signal()方法。下面我们就使用它实现吧。

/**
 * 生产者消费者模式:使用{@link java.util.concurrent.BlockingQueue}实现
 */
public class ProducerConsumerByBQ{
    private static final int CAPACITY = 5;

    public static void main(String args[]){
        LinkedBlockingDeque<Integer> blockingQueue = new LinkedBlockingDeque<Integer>(CAPACITY);

        Thread producer1 = new Producer("P-1", blockingQueue, CAPACITY);
        Thread producer2 = new Producer("P-2", blockingQueue, CAPACITY);
        Thread consumer1 = new Consumer("C1", blockingQueue, CAPACITY);
        Thread consumer2 = new Consumer("C2", blockingQueue, CAPACITY);
        Thread consumer3 = new Consumer("C3", blockingQueue, CAPACITY);

        producer1.start();
        producer2.start();
        consumer1.start();
        consumer2.start();
        consumer3.start();
    }

    /**
     * 生产者
     */
    public static class Producer extends Thread{
        private LinkedBlockingDeque<Integer> blockingQueue;
        String name;
        int maxSize;
        int i = 0;

        public Producer(String name, LinkedBlockingDeque<Integer> queue, int maxSize){
            super(name);
            this.name = name;
            this.blockingQueue = queue;
            this.maxSize = maxSize;
        }

        @Override
        public void run(){
            while(true){
                try {
                    blockingQueue.put(i);
                    System.out.println("[" + name + "] Producing value : +" + i);
                    i++;

                    //暂停最多1秒
                    Thread.sleep(new Random().nextInt(1000));
                } catch (InterruptedException e) {
                    e.printStackTrace();
                }
            }

        }
    }

    /**
     * 消费者
     */
    public static class Consumer extends Thread{
        private LinkedBlockingDeque<Integer> blockingQueue;
        String name;
        int maxSize;

        public Consumer(String name, LinkedBlockingDeque<Integer> queue, int maxSize){
            super(name);
            this.name = name;
            this.blockingQueue = queue;
            this.maxSize = maxSize;
        }

        @Override
        public void run(){
            while(true){
                try {
                    int x = blockingQueue.take();
                    System.out.println("[" + name + "] Consuming : " + x);

                    //暂停最多1秒
                    Thread.sleep(new Random().nextInt(1000));
                } catch (InterruptedException e) {
                    e.printStackTrace();
                }
            }
        }
    }
}
  
  
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
  • 43
  • 44
  • 45
  • 46
  • 47
  • 48
  • 49
  • 50
  • 51
  • 52
  • 53
  • 54
  • 55
  • 56
  • 57
  • 58
  • 59
  • 60
  • 61
  • 62
  • 63
  • 64
  • 65
  • 66
  • 67
  • 68
  • 69
  • 70
  • 71
  • 72
  • 73
  • 74
  • 75
  • 76
  • 77
  • 78
  • 79
  • 80
  • 81
  • 82
  • 83
  • 84
  • 85
  • 86
  • 87

输出日志如下:

[P-2] Producing value : +0
[P-1] Producing value : +0
[C1] Consuming : 0
[C3] Consuming : 0
[P-2] Producing value : +1
[C2] Consuming : 1
[P-2] Producing value : +2
[C1] Consuming : 2
[P-1] Producing value : +1
[C2] Consuming : 1
[P-1] Producing value : +2
[C3] Consuming : 2
[P-1] Producing value : +3
[C2] Consuming : 3
[P-2] Producing value : +3
[C1] Consuming : 3
[P-1] Producing value : +4
[C2] Consuming : 4
[P-2] Producing value : +4
[C3] Consuming : 4
[P-2] Producing value : +5
[C1] Consuming : 5
[P-1] Producing value : +5
[C2] Consuming : 5
[P-1] Producing value : +6
[C1] Consuming : 6
[P-2] Producing value : +6
[C2] Consuming : 6
[P-2] Producing value : +7
[C2] Consuming : 7
[P-1] Producing value : +7
[C1] Consuming : 7
[P-2] Producing value : +8
[C3] Consuming : 8
[P-2] Producing value : +9
[C2] Consuming : 9
[P-1] Producing value : +8
[C2] Consuming : 8
[P-2] Producing value : +10
[C1] Consuming : 10
[P-1] Producing value : +9
[C3] Consuming : 9
[P-1] Producing value : +10
[C2] Consuming : 10
[P-2] Producing value : +11
[C1] Consuming : 11
[C3] Consuming : 12
[P-2] Producing value : +12
[P-2] Producing value : +13
[C2] Consuming : 13
[P-1] Producing value : +11
[C3] Consuming : 11
[P-1] Producing value : +12
[C3] Consuming : 12
[P-2] Producing value : +14
[C1] Consuming : 14
[P-1] Producing value : +13
[C2] Consuming : 13
[P-2] Producing value : +15
[C3] Consuming : 15
[P-2] Producing value : +16
[C1] Consuming : 16
[P-1] Producing value : +14
[C3] Consuming : 14
[P-2] Producing value : +17
[C2] Consuming : 17
  
  
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
  • 43
  • 44
  • 45
  • 46
  • 47
  • 48
  • 49
  • 50
  • 51
  • 52
  • 53
  • 54
  • 55
  • 56
  • 57
  • 58
  • 59
  • 60
  • 61
  • 62
  • 63
  • 64
  • 65
  • 66

参考资料






前言

猜你喜欢

转载自blog.csdn.net/shadowcw/article/details/82352829