Java-多线程编程

1、序言

单进程计算机只能做一件事情。玩电脑,一边玩游戏(游戏进程)一边听音乐(音乐进程)。对于单核计算机来讲,在同一个时间点上,游戏进程和音乐进程是同时在运行吗?不是。因为计算机的 CPU 只能在某个时间点上做一件事。由于计算机将在“游戏进程”和“音乐进程”之间频繁的切换执行,切换速度极高,人类感觉游戏和音乐在同时进行。多进程的作用不是提高执行速度,而是提高 CPU 的使用率。进程和进程之间的内存是独立的。

对于单核CPU来说,某一时刻只能有一个线程在执行(微观串行),从宏观角度来看,多个线程在同时执行(宏观并行)。对于双核或双核以上的CPU来说,可以真正做到微观并行。

并行与并发:
(1)并行:多个cpu实例或者多台机器同时执行一段处理逻辑,是真正的同时。
(2)并发:通过cpu调度算法,让用户看上去同时执行,实际上从cpu操作层面不是真正的同时。并发往往在场景中有公用的资源,那么针对这个公用的资源往往产生瓶颈,我们会用TPS或者QPS来反应这个系统的处理能力。

多线程不是为了提高执行速度,而是提高应用程序的使用率。线程和线程共享“堆内存和方法区内存”,栈内存是独立的,一个线程一个栈。可以给现实世界中的人类一种错觉:感觉多个线程在同时并发执行。

Java命令会启动Java虚拟机(JVM),等于启动了一个应用程序,表示启动了一个进程。该进程会自动启动一个“主线程”,然后主线程去调用某个类的main方法。所以main方法运行在主线程中。在此之前的所有程序都是单线程的。

2、线程生命周期

这里写图片描述
这里写图片描述

1、新建状态(New):采用 new() 语句新创建了一个线程对象。
2、就绪状态(Runnable):线程对象创建后,其他线程调用了该对象的start()方法。该状态的线程位于可运行线程池中,变得可运行,等待获取CPU的使用权。
3、运行状态(Running):就绪状态的线程获得CPU时间片,线程的run()方法开始执行时,线程进入运行状态。
4、阻塞状态(Blocked):阻塞状态是线程因为某种原因放弃CPU使用权,暂时停止运行。直到线程进入就绪状态,才有机会转到运行状态。阻塞的情况分三种:
(1)、等待阻塞:运行的线程执行wait()方法,JVM会把该线程放入等待池中。(wait会释放持有的锁)
(2)、同步阻塞:运行的线程在获取对象的同步锁时,若该同步锁被别的线程占用,则JVM会把该线程放入锁池中。
(3)、其他阻塞:运行的线程执行sleep()或join()方法,或者发出了I/O请求时,JVM会把该线程置为阻塞状态。当sleep()状态超时、join()等待线程终止或者超时、或者I/O处理完毕时,线程重新转入就绪状态。(注意,sleep是不会释放持有的锁)
5、死亡状态(Dead):线程执行完了或者因异常退出了run()方法,该线程结束生命周期。

3、线程的调度与控制

线程的调度模型分为: 分时调度模型抢占式调度模型,Java使用抢占式调度模型 。
通常我们的计算机只有一个 CPU,CPU 在某一个时刻只能执行一条指令,线程只有得到 CPU时间片,也就是使用权,才可以执行指令。在单 CPU 的机器上线程不是并行运行的,只有在多个 CPU 上线程才可以并行运行。Java 虚拟机要负责线程的调度,取得 CPU 的使用权。
(1)分时调度模型: 所有线程轮流使用CPU的使用权,平均分配每个线程占用CPU的时间片。
(2)抢占式调度模型:优先让优先级高的线程使用CPU,如果线程的优先级相同,那么会随机选择一个,优先级高的线程获取的CPU时间片相对多一些。

3.1 线程优先级

调整线程优先级:Java线程有优先级,优先级高的线程会获得较多的运行机会。

Java线程的优先级用整数表示,取值范围是1~10,Thread类有以下三个静态常量:

static int MAX_PRIORITY
          线程可以具有的最高优先级,取值为10static int MIN_PRIORITY
          线程可以具有的最低优先级,取值为1static int NORM_PRIORITY
          分配给线程的默认优先级,取值为5

Thread类的setPriority()和getPriority()方法分别用来设置和获取线程的优先级。
每个线程都有默认的优先级。主线程的默认优先级为Thread.NORM_PRIORITY。
线程的优先级有继承关系,比如A线程中创建了B线程,那么B将和A具有相同的优先级。
JVM提供了10个线程优先级,但与常见的操作系统都不能很好的映射。如果希望程序能移植到各个操作系统中,应该仅仅使用Thread类有以下三个静态常量作为优先级,这样能保证同样的优先级采用了同样的调度方式。

//设置线程的优先级,线程启动后不能再次设置优先级
//必须在启动前设置优先级
//设置最高优先级
t1.setPriority(Thread.MAX_PRIORITY);

3.2 线程睡眠sleep()

sleep 设置休眠的时间,单位毫秒,当一个线程遇到 sleep 的时候,就会睡眠,进入到阻塞状态,放弃 CPU,腾出 cpu 时间片,给其他线程用,所以在开发中通常我们会这样做,使其他的线程能够取得 CPU 时间片,当睡眠时间到达了,线程会进入可运行状态,得到CPU时间片继续执行,如果线程在睡眠状态被中断了,将会抛出 IterruptedException。

sleep()是Thread类的Static(静态)的方法;因此他不能改变对象的机锁,所以当在一个Synchronized块中调用Sleep()方法是,线程虽然休眠了,但是对象的机锁并木有被释放,其他线程无法访问这个对象(即使睡着也持有对象锁)。

在sleep()休眠时间期满后,该线程不一定会立即执行,这是因为其它线程可能正在运行而且没有被调度为放弃执行,除非此线程具有更高的优先级。

3.3 线程中断interrupt()

如果我们的线程正在睡眠,可以采用 interrupt 进行中断。通常定义一个标记,来判断标记的状态停止线程的执行。

不要以为它是中断某个线程!它只是线线程发送一个中断信号,让线程在无限等待时(如死锁时)能抛出异常,从而结束线程,但是如果你吃掉了这个异常,那么这个线程还是不会中断的!

3.4 线程让步yield()

Thread.yield()方法作用是:暂停当前正在执行的线程对象,并执行其他线程。

yield()应该做的是让当前运行线程回到可运行状态,以允许具有相同优先级的其他线程获得运行机会。因此,使用yield()的目的是让相同优先级的线程之间能适当的轮转执行。但是,实际中无法保证yield()达到让步目的,因为让步的线程还有可能被线程调度程序再次选中。

结论:yield()从未导致线程转到等待/睡眠/阻塞状态。在大多数情况下,yield()将导致线程从运行状态转到可运行状态,但有可能没有效果。

class ThreadYield extends Thread{
    public ThreadYield(String name) {
        super(name);
    }

    @Override
    public void run() {
        for (int i = 1; i <= 50; i++) {
            System.out.println("" + this.getName() + "-----" + i);
            // 当i为30时,该线程就会把CPU时间让掉,让其他或者自己的线程执行(也就是谁先抢到谁执行)
            if (i ==30) {
                this.yield();
            }
        }
    }
}

public class Main {
    public static void main(String[] args) {
        ThreadYield yt1 = new ThreadYield("张三");
        ThreadYield yt2 = new ThreadYield("李四");
        yt1.start();
        yt2.start();
    }
}

运行结果:

第一种情况:李四(线程)当执行到30时会CPU时间让掉,这时张三(线程)抢到CPU时间并执行。
第二种情况:李四(线程)当执行到30时会CPU时间让掉,这时李四(线程)抢到CPU时间并执行。

sleep()和yield()的区别

sleep()和yield()的区别):sleep()使当前线程进入停滞状态,所以执行sleep()的线程在指定的时间内肯定不会被执行;yield()只是使当前线程重新回到可执行状态,所以执行yield()的线程有可能在进入到可执行状态后马上又被执行。

sleep 方法使当前运行中的线程睡眼一段时间,进入不可运行状态,这段时间的长短是由程序设定的,yield 方法使当前线程让出 CPU 占有权,但让出的时间是不可设定的。实际上,yield()方法对应了如下操作:先检测当前是否有相同优先级的线程处于同可运行状态,如有,则把 CPU 的占有权交给此线程,否则,继续运行原来的线程。所以yield()方法称为“退让”,它把运行机会让给了同等优先级的其他线程。

另外,sleep 方法允许较低优先级的线程获得运行机会,但 yield() 方法执行时,当前线程仍处在可运行状态,所以,不可能让出较低优先级的线程些时获得 CPU 占有权。在一个运行系统中,如果较高优先级的线程没有调用 sleep 方法,又没有受到 I\O 阻塞,那么,较低优先级线程只能等待所有较高优先级的线程运行结束,才有机会运行。

3.5 线程加入join()

join()方法,等待其他线程终止。在当前线程中调用另一个线程的join()方法,则当前线程转入阻塞状态,直到另一个进程运行结束,当前线程再由阻塞转为就绪状态。

这里需要理解的就是该线程是指的主线程等待子线程的终止。

也就是在子线程调用了join()方法后,主线程的剩余代码,只有等到子线程结束了才能执行。

Thread t = new AThread(); 
t.start(); 
t.join();

为什么要用join()方法?

在很多情况下,主线程生成并起动了子线程,如果子线程里要进行大量的耗时的运算,主线程往往将于子线程之前结束,但是如果主线程处理完其他的事务后,需要用到子线程的处理结果,也就是主线程需要等待子线程执行完成之后再结束,这个时候就要用到join()方法了。

示例代码(不使用join())

class Thread1 extends Thread{
    private String name;
    public Thread1(String name) {
        super(name);
       this.name=name;
    }
    public void run() {
        System.out.println(Thread.currentThread().getName() + " 线程运行开始!");
        for (int i = 0; i < 5; i++) {
            System.out.println("子线程"+name + "运行 : " + i);
            try {
                sleep((int) Math.random() * 10);
            } catch (InterruptedException e) {
                e.printStackTrace();
            }
        }
        System.out.println(Thread.currentThread().getName() + " 线程运行结束!");
    }
}

public class Main {

    public static void main(String[] args) {
        System.out.println(Thread.currentThread().getName()+"主线程运行开始!");
        Thread1 mTh1=new Thread1("A");
        Thread1 mTh2=new Thread1("B");
        mTh1.start();
        mTh2.start();
        System.out.println(Thread.currentThread().getName()+ "主线程运行结束!");

    }

}

输出结果:

main主线程运行开始!
main主线程运行结束!
B 线程运行开始!
子线程B运行 : 0
A 线程运行开始!
子线程A运行 : 0
子线程B运行 : 1
子线程A运行 : 1
子线程A运行 : 2
子线程A运行 : 3
子线程A运行 : 4
A 线程运行结束!
子线程B运行 : 2
子线程B运行 : 3
子线程B运行 : 4
B 线程运行结束!

发现主线程比子线程早结束!!!!!!!!

示例代码(使用join())

public class Main {

    public static void main(String[] args) {
        System.out.println(Thread.currentThread().getName()+"主线程运行开始!");
        Thread1 mTh1=new Thread1("A");
        Thread1 mTh2=new Thread1("B");
        mTh1.start();
        mTh2.start();
        try {
            mTh1.join();
        } catch (InterruptedException e) {
            e.printStackTrace();
        }
        try {
            mTh2.join();
        } catch (InterruptedException e) {
            e.printStackTrace();
        }
        System.out.println(Thread.currentThread().getName()+ "主线程运行结束!");
    }
}

运行结果:

main主线程运行开始!
A 线程运行开始!
子线程A运行 : 0
B 线程运行开始!
子线程B运行 : 0
子线程A运行 : 1
子线程B运行 : 1
子线程A运行 : 2
子线程B运行 : 2
子线程A运行 : 3
子线程B运行 : 3
子线程A运行 : 4
A 线程运行结束!
子线程B运行 : 4
B 线程运行结束!
main主线程运行结束!

主线程一定会等子线程都结束了才结束!

3.6 线程等待wait()

Object类中的wait()方法,导致当前的线程等待,直到其他线程调用此对象的 notify() 方法或 notifyAll() 唤醒方法。这两个唤醒方法也是Object类中的方法,行为等价于调用 wait(0) 一样。

wait和sleep区别

共同点:
1. 他们都是在多线程的环境下,都可以在程序的调用处阻塞指定的毫秒数,并返回。
2.wait()和sleep()都可以通过interrupt()方法打断线程的暂停状态,从而使线程立刻抛出InterruptedException。
如果线程A希望立即结束线程B,则可以对线程B对应的Thread实例调用interrupt方法。如果此刻线程B正在wait/sleep/join,则线程B会立刻抛出InterruptedException,在catch() {} 中直接return即可安全地结束线程。
需要注意的是,InterruptedException是线程自己从内部抛出的,并不是interrupt()方法抛出的。对某一线程调用interrupt()时,如果该线程正在执行普通的代码,那么该线程根本就不会抛出InterruptedException。但是,一旦该线程进入到wait()/sleep()/join()后,就会立刻抛出InterruptedException 。

不同点:

  1. Thread类的方法:sleep(),yield()等 Object的方法:wait()和notify()等
  2. 每个对象都有一个锁来控制同步访问。Synchronized关键字可以和对象的锁交互,来实现线程的同步。sleep方法没有释放锁,而wait方法释放了锁,使得其他线程可以使用同步控制块或者方法。
  3. wait,notify和notifyAll只能在同步控制方法或者同步控制块里面使用,而sleep可以在任何地方使用 所以sleep()和wait()方法的最大区别是:
        sleep()睡眠时,保持对象锁,仍然占有该锁;
        而wait()睡眠时,释放对象锁。但是wait()和sleep()都可以通过interrupt()方法打断线程的暂停状态,从而使线程立刻抛出InterruptedException(但不建议使用该方法)。

3.7 线程唤醒notify()

Object类中的notify()方法,唤醒在此对象监视器上等待的单个线程。如果所有线程都在此对象上等待,则会选择唤醒其中一个线程。选择是任意性的,并在对实现做出决定时发生。线程通过调用其中一个 wait 方法,在对象的监视器上等待。 直到当前的线程放弃此对象上的锁定,才能继续执行被唤醒的线程。被唤醒的线程将以常规方式与在该对象上主动同步的其他所有线程进行竞争;例如,唤醒的线程在作为锁定此对象的下一个线程方面没有可靠的特权或劣势。类似的方法还有一个notifyAll(),唤醒在此对象监视器上等待的所有线程。

Obj.wait(),与Obj.notify()必须要与synchronized(Obj)一起使用,也就是wait,与notify是针对已经获取了Obj锁进行操作,从语法角度来说就是Obj.wait(),Obj.notify必须在synchronized(Obj){…}语句块内。

从功能上来说wait就是说线程在获取对象锁后,主动释放对象锁,同时本线程休眠。直到有其它线程调用对象的notify()唤醒该线程,才能继续获取对象锁,并继续执行。相应的notify()就是对对象锁的唤醒操作。

但有一点需要注意的是notify()调用后,并不是马上就释放对象锁的,而是在相应的synchronized(){}语句块执行结束,自动释放锁后,JVM会在wait()对象锁的线程中随机选取一线程,赋予其对象锁,唤醒线程,继续执行。这样就提供了在线程间同步、唤醒的操作。

Thread.sleep()与Object.wait()二者都可以暂停当前线程,释放CPU控制权,主要的区别在于Object.wait()在释放CPU同时,释放了对象锁的控制。

单单在概念上理解清楚了还不够,需要在实际的例子中进行测试才能更好的理解。对Object.wait(),Object.notify()的应用最经典的例子,应该是三线程打印ABC的问题了吧,这是一道比较经典的面试题,题目要求如下:

建立三个线程,A线程打印10次A,B线程打印10次B,C线程打印10次C,要求线程同时运行,交替打印10次ABC。这个问题用Object的wait(),notify()就可以很方便的解决。代码如下:

public class MyThreadPrinter2 implements Runnable {   

    private String name;   
    private Object prev;   
    private Object self;   

    private MyThreadPrinter2(String name, Object prev, Object self) {   
        this.name = name;   
        this.prev = prev;   
        this.self = self;   
    }   

    @Override  
    public void run() {   
        int count = 10;   
        while (count > 0) {   
            synchronized (prev) {   
                synchronized (self) {   
                    System.out.print(name);   
                    count--;                
                    self.notify();   
                }   
                try {   
                    prev.wait();   
                } catch (InterruptedException e) {   
                    e.printStackTrace();   
                }   
            }   
        }   
    }   

    public static void main(String[] args) throws Exception {   
        Object a = new Object();   
        Object b = new Object();   
        Object c = new Object();   
        MyThreadPrinter2 pa = new MyThreadPrinter2("A", c, a);   
        MyThreadPrinter2 pb = new MyThreadPrinter2("B", a, b);   
        MyThreadPrinter2 pc = new MyThreadPrinter2("C", b, c);   

        new Thread(pa).start();
        Thread.sleep(100);  //确保按顺序A、B、C执行
        new Thread(pb).start();
        Thread.sleep(100);  
        new Thread(pc).start();   
        Thread.sleep(100);  
     }   
}  

输出结果:

ABCABCABCABCABCABCABCABCABCABC

先来解释一下其整体思路,从大的方向上来讲,该问题为三线程间的同步唤醒操作,主要的目的就是ThreadA->ThreadB->ThreadC->ThreadA循环执行三个线程。为了控制线程执行的顺序,那么就必须要确定唤醒、等待的顺序,所以每一个线程必须同时持有两个对象锁,才能继续执行。一个对象锁是prev,就是前一个线程所持有的对象锁。还有一个就是自身对象锁。

主要的思想就是,为了控制执行的顺序,必须要先持有prev锁,也就前一个线程要释放自身对象锁,再去申请自身对象锁,两者兼备时打印,之后首先调用self.notify()释放自身对象锁,唤醒下一个等待线程,再调用prev.wait()释放prev对象锁,终止当前线程,等待循环结束后再次被唤醒。

运行上述代码,可以发现三个线程循环打印ABC,共10次。程序运行的主要过程就是A线程最先运行,持有C,A对象锁,后释放A,C锁,唤醒B。线程B等待A锁,再申请B锁,后打印B,再释放B,A锁,唤醒C,线程C等待B锁,再申请C锁,后打印C,再释放C,B锁,唤醒A。看起来似乎没什么问题,但如果你仔细想一下,就会发现有问题,就是初始条件,三个线程按照A,B,C的顺序来启动,按照前面的思考,A唤醒B,B唤醒C,C再唤醒A。但是这种假设依赖于JVM中线程调度、执行的顺序。

4、线程同步synchronized()

线程同步,指某一个时刻,指允许一个线程来访问共享资源,线程同步其实是对对象加锁,如果对象中的方法都是同步方法,那么某一时刻只能执行一个方法,采用线程同步解决以上的问题,我们只要保证线程一操作 s 时,线程 2 不允许操作即可,只有线程一使用完成 s 后,再让线程二来使用 s 变量。

    异步编程模型 : t1线程执行t1的,t2线程执行t2的,两个线程之间谁也不等谁.
    同步编程模型 : t1线程和t2线程执行,t2线程必须等t1线程执行结束之后,t2线程才能执行,这是同步编程模型.
    ​
    什么时候要用同步呢?为什么要引入线程同步呢?
    1.为了数据的安全,尽管应用程序的使用率降低,但是为了保证数据是安全的,
      必须加入线程同步机制。线程同步机制使程序变成了(等同)单线程。
    2.什么条件下要使用线程同步?
      第一: 必须是多线程环境
      第二: 多线程环境共享同一个数据.
      第三: 共享的数据涉及到修改操作.
    3.使用同步需要注意的问题:
    A.无论synchronized关键字加在方法上还是对象上,它取得的锁都是对象,
       而不是把一段代码或函数当作锁――而且同步方法很可能还会被其他线程的对象访问。
    B.每个对象只有一个锁(lock)与之相关联。
    C.实现同步是要很大的系统开销作为代价的,甚至可能造成死锁,
       所以尽量避免无谓的同步控制。
  /**
   *synchronized 是对对象加锁,
   *采用 synchronized 同步最好只同步有线程安全的代码(而不是整个方法),
   *可以优先考虑使用 synchronized 同步块,
   *因为同步的代码越多,执行的时间就会越长,其他线程等待的时间就会越长,影响效率
   */
  public synchronized void run() {
       //使用同步块。this指的是什么呢?它指的就是调用这个方法的对象。
       synchronized (this) {
          for (int i=0; i<10; i++) {
              s+=i;
        }
       System.out.println(Thread.currentThread().getName() + ", s=" + s);
       s = 0;
    }

应用实例1-对象锁

(保证同一时间只有一个线程对账户余额进行修改):

public class SynchronizedTest {
    //main方法——主线程
    public static void main(String[] args) {
        Account account=new Account("Actno-001",5000.0);
        Thread t1=new Thread(new Processor(account));
        Thread t2=new Thread(new Processor(account));
        t1.start();
        t2.start();
    }  
}

/**
 * 取款线程
 */
class Processor implements Runnable{
    Account act;
    Processor(Account act){
        this.act=act;
    }
    @Override
    public void run() {
        act.withdraw(1000.0);
        System.out.println("取款1000.0成功,余额: "+act.getBalance());
    }

}
class Account {
    private String actno;
    private double balance;

    public Account() {
        super();
    }

    public Account(String actno, double balance) {
        super();
        this.actno = actno;
        this.balance = balance;
    }

    /**
     * 对外提供一个取款的方法 对当前账户进行取款操作
     */
    public void withdraw(double money) {
        //把需要同步的代码,放到同步语句块中。遇到synchronized就找锁,找到就执行,找不到就等
        /**
         * 原理: t1线程和t2线程
         * t1线程执行到此处,遇到了synchronized关键字,就会去找this的对象锁,
         * 如果找到this对象锁,则进入同步语句块中执行程序,当同步语句块中的代码执行结束之后,
         * t1线程归还this的对象锁.
         * 
         * 在t1线程执行同步语句块的过程中,如果t2线程也过来执行以下代码,也遇到synchronized关键字,
         * 所以也去找this对象锁,但是该对象锁被t1线程持有,只能在这等待this对象的归还.
         * 
         * synchronized关键字添加到成员方法上,线程拿走的也是this的对象锁.
         * 
         */
        synchronized (this) {
            double after = balance - money;
            try {
                //延迟
                Thread.sleep(1000);
            } catch (InterruptedException e) {
                e.printStackTrace();
            }
            //更新
            this.setBalance(after);
        }
    }

    public String getActno() {
        return actno;
    }

    public void setActno(String actno) {
        this.actno = actno;
    }

    public double getBalance() {
        return balance;
    }

    public void setBalance(double balance) {
        this.balance = balance;
    }
}

应用实例2-类锁

public class SynchronizedTest2 {
    public static void main(String[] args) throws InterruptedException {
        MyClass mc1=new MyClass();
        MyClass mc2=new MyClass();
        Thread t1=new Thread(new Runnable1(mc1));
        Thread t2=new Thread(new Runnable1(mc2));
        t1.setName("t1");
        t2.setName("t2");

        t1.start();
        //延迟,保证t1先执行
        Thread.sleep(1000);
        t2.start();
    }
}

class Runnable1 implements Runnable{
    MyClass mc;

    Runnable1(MyClass mc){
        this.mc=mc;
    }

    @Override
    public void run() {
        if("t1".equals(Thread.currentThread().getName())){
            MyClass.m1();//因为是静态方法,用的还是类锁,和对象锁无关
        }
        if("t2".equals(Thread.currentThread().getName())){
            MyClass.m2();
        }
    }
}

class MyClass{
    //synchronized添加到静态方法上,线程执行此方法的时候会找类锁,类锁只有一把
    public synchronized static void m1(){
        try {
            Thread.sleep(10000);
        } catch (InterruptedException e) {
            e.printStackTrace();
        }
        System.out.println("m1()............");
    }

    /**
     *  m2()不会等m1结束,因为该方法没有被synchronized修饰
     */
  // public static void m2(){
  //    System.out.println("m2()........");
  // }

    /**
     * m2方法等m1结束之后才能执行,该方法有synchronized
     * 线程执行该方法需要"类锁",而类锁只有一个.
     */
    public synchronized static void m2(){
        System.out.println("m2()........");
    }
}

5、死锁

public class DeadLock {

    public static void main(String[] args) {
        Object o1 = new Object();
        Object o2 = new Object();
        Thread t1 = new Thread(new T1(o1, o2));
        Thread t2 = new Thread(new T2(o1, o2));
        t1.start();
        t2.start();
    }
}

class T1 implements Runnable {

    Object o1;
    Object o2;

    T1(Object o1, Object o2) {
        this.o1 = o1;
        this.o2 = o2;
    }

    @Override
    public void run() {
        synchronized (o1) {
            try {
                Thread.sleep(1000);
            } catch (InterruptedException e) {
                e.printStackTrace();
            }
            synchronized (o2) {

            }
        }
    }
}

class T2 implements Runnable {

    Object o1;
    Object o2;

    T2(Object o1, Object o2) {
        this.o1 = o1;
        this.o2 = o2;
    }

    @Override
    public void run() {
        synchronized (o2) {
            try {
                Thread.sleep(1000);
            } catch (InterruptedException e) {
                e.printStackTrace();
            }
            synchronized (o1) {

            }
        }
    }
}

6、守护线程

从线程分类上可以分为:用户线程(以上讲的都是用户线程),另一个是守护线程。
守护线程是这样的,所有的用户线程结束生命周期,守护线程才会结束生命周期,只要有一个用户线程存在,那么守护线程就不会结束,例如 java 中著名的垃圾回收器就是一个守护线程,只有应用程序中所有的线程结束,它才会结束。
(1)其它所有的用户线程结束,则守护线程退出!
(2)守护线程一般都是无限执行的.

public class DaemonThread {
    public static void main(String[] args) throws InterruptedException {
        Thread t1 = new Thread(new Runnable2());
        t1.setName("t1");
        // 将t1这个用户线程修改成守护线程.在线程没有启动时可以修改以下参数
        t1.setDaemon(true);
        t1.start();
        // 主线程
        for (int i = 0; i < 10; i++) {
            System.out.println(Thread.currentThread().getName() + "----->" + i);
            Thread.sleep(1000);
        }
    }
}

class Runnable2 implements Runnable {

    @Override
    public void run() {
        int i = 0;
        while (true) {
            i++;
            System.out.println(Thread.currentThread().getName() + "-------->" + i);
            try {
                Thread.sleep(500);
            } catch (InterruptedException e) {
                e.printStackTrace();
            }
        }
    }
}

设置为守护线程后,当主线程结束后,守护线程并没有把所有的数据输出完就结束了,也即是说守护线程是为用户线程服务的,当用户线程全部结束,守护线程会自动结束。

11、定时器

/**
 * 关于定时器的应用 作用: 每隔一段固定的时间执行一段代码
 */
public class TimerTest {

    public static void main(String[] args) throws ParseException {
        // 1.创建定时器
        Timer t = new Timer();
        // 2.指定定时任务
        t.schedule(new LogTimerTask(), new SimpleDateFormat("yyyy-MM-dd HH:mm:ss SSS").parse("2017-06-29 14:24:00 000"), 10 * 1000);
    }
}

// 指定任务
class LogTimerTask extends TimerTask {

    @Override
    public void run() {
        System.out.println(new SimpleDateFormat("yyyy-MM-dd HH:mm:ss SSS").format(new Date()));
    }
}

猜你喜欢

转载自blog.csdn.net/weixin_39190897/article/details/82081352