Python笔记day40(并发)|守护线程、线程锁、信号量、事件、条件、定时器、队列、线程池

版权声明:转载请注明来源 https://blog.csdn.net/qq_34755081/article/details/82154542

1,内容回顾

# 正确的学习方法
    # input
    # output
    # correct 纠正

# 线程
    # 线程是进程中的执行单位
    # 线程是cpu执行的最小单位
    # 线城之间资源共享
    # 线程的开启和关闭以及切换的时间开销远远小于进程
    # 线程本身可以在同一时间使用多个cpu
# python 与 线程
    # Cpython解释器在解释代码过程中容易产生数据不安全的问题
    # GIL 全局解释器锁 锁的是线程
# threading

2,守护线程

import time
from threading import Thread
def func1():
    while True:
        print('*'*10)
        time.sleep(1)
def func2():
    print('in func2')
    time.sleep(5)

t = Thread(target=func1,)
t.daemon = True
t.start()
t2 = Thread(target=func2,)
t2.start()
t2.join()
print('主线程')

# 守护进程随着主进程代码的执行结束而结束
# 守护线程会在主线程结束之后等待其他子线程的结束才结束

# 主进程在执行完自己的代码之后不会立即结束 而是等待子进程结束之后 回收子进程的资源
# import time
# from multiprocessing import Process
# def func():
#     time.sleep(5)
#
# if __name__ == '__main__':
#         Process(target=func).start()

3,线程锁

import time
from threading import Lock,Thread
# Lock 互斥锁
# def func(lock):
#     global n
#     lock.acquire()
#     temp = n
#     time.sleep(0.2)
#     n = temp - 1
#     lock.release()
#
# n = 10
# t_lst = []
# lock = Lock()
# for i in range(10):
#     t = Thread(target=func,args=(lock,))
#     t.start()
#     t_lst.append(t)

# for t in  t_lst: t.join()
# print(n)

# 科学家吃面

# noodle_lock  = Lock()
# fork_lock = Lock()
# def eat1(name):
#     noodle_lock.acquire()
#     print('%s拿到面条啦'%name)
#     fork_lock.acquire()
#     print('%s拿到叉子了'%name)
#     print('%s吃面'%name)
#     fork_lock.release()
#     noodle_lock.release()
#
# def eat2(name):
#     fork_lock.acquire()
#     print('%s拿到叉子了'%name)
#     time.sleep(1)
#     noodle_lock.acquire()
#     print('%s拿到面条啦'%name)
#     print('%s吃面'%name)
#     noodle_lock.release()
#     fork_lock.release()
#
# Thread(target=eat1,args=('alex',)).start()
# Thread(target=eat2,args=('Egon',)).start()
# Thread(target=eat1,args=('bossjin',)).start()
# Thread(target=eat2,args=('nezha',)).start()

from threading import RLock   # 递归锁
fork_lock = noodle_lock  = RLock()   # 一个钥匙串上的两把钥匙
def eat1(name):
    noodle_lock.acquire()            # 一把钥匙
    print('%s拿到面条啦'%name)
    fork_lock.acquire()
    print('%s拿到叉子了'%name)
    print('%s吃面'%name)
    fork_lock.release()
    noodle_lock.release()

def eat2(name):
    fork_lock.acquire()
    print('%s拿到叉子了'%name)
    time.sleep(1)
    noodle_lock.acquire()
    print('%s拿到面条啦'%name)
    print('%s吃面'%name)
    noodle_lock.release()
    fork_lock.release()

Thread(target=eat1,args=('alex',)).start()
Thread(target=eat2,args=('Egon',)).start()
Thread(target=eat1,args=('bossjin',)).start()
Thread(target=eat2,args=('nezha',)).start()

4,信号量

import time
from threading import Semaphore,Thread
def func(sem,a,b):
    sem.acquire()
    time.sleep(1)
    print(a+b)
    sem.release()

sem = Semaphore(4)
for i in range(10):
    t = Thread(target=func,args=(sem,i,i+5))
    t.start()

5,事件

# 事件被创建的时候
# False状态
    # wait() 阻塞
# True状态
    # wait() 非阻塞
# clear 设置状态为False
# set  设置状态为True



#  数据库 - 文件夹
#  文件夹里有好多excel表格
    # 1.能够更方便的对数据进行增删改查
    # 2.安全访问的机制


#  起两个线程
#  第一个线程 : 连接数据库
        # 等待一个信号 告诉我我们之间的网络是通的
        # 连接数据库
#  第二个线程 : 检测与数据库之间的网络是否连通
        # time.sleep(0,2) 2
        # 将事件的状态设置为True
import time
import random
from threading import Thread,Event
def connect_db(e):
    count = 0
    while count < 3:
        e.wait(0.5)   # 状态为False的时候,我只等待1s就结束
        if e.is_set() == True:
            print('连接数据库')
            break
        else:
            count += 1
            print('第%s次连接失败'%count)
    else:
        raise TimeoutError('数据库连接超时')

def check_web(e):
    time.sleep(random.randint(0,3))
    e.set()

e = Event()
t1 = Thread(target=connect_db,args=(e,))
t2 = Thread(target=check_web,args=(e,))
t1.start()
t2.start()

6,条件

# 条件
from threading import Condition

# 条件
# 锁
# acquire release
# 一个条件被创建之初 默认有一个False状态
# False状态 会影响wait一直处于等待状态
# notify(int数据类型)  造钥匙
from threading import Thread,Condition
def func(con,i):
    con.acquire()
    con.wait() # 等钥匙
    print('在第%s个循环里'%i)
    con.release()
con = Condition()
for i in range(10):
    Thread(target=func,args = (con,i)).start()
while True:
    num = int(input('>>>'))
    con.acquire()
    con.notify(num)  # 造钥匙
    con.release()

7,定时器

import time
from threading import Timer
def func():
    print('时间同步')   #1-3

while True:
    t = Timer(5,func).start()   # 非阻塞的
    time.sleep(5)

8,队列

# queue
import queue

q = queue.Queue()  # 队列 先进先出
# q.put()
# q.get()
# q.put_nowait()
# q.get_nowait()

# q = queue.LifoQueue()  # 栈 先进后出
# q.put(1)
# q.put(2)
# q.put(3)
# print(q.get())
# print(q.get())

q = queue.PriorityQueue()  # 优先级队列
q.put((20,'a'))
q.put((10,'b'))
q.put((30,'c'))
q.put((-5,'d'))
q.put((1,'?'))
print(q.get())

9,线程池

import time
from concurrent.futures import ThreadPoolExecutor
def func(n):
    time.sleep(2)
    print(n)
    return n*n

def call_back(m):
    print('结果是 %s'%m.result())

tpool = ThreadPoolExecutor(max_workers=5)   #  默认 不要超过cpu个数*5
for i in  range(20):
    tpool.submit(func,i).add_done_callback(call_back)


# tpool.map(func,range(20))  # 拿不到返回值
# t_lst = []
# for i in  range(20):
#     t = tpool.submit(func,i)
#     t_lst.append(t)
# tpool.shutdown()  # close+join    #
# print('主线程')
# for t in t_lst:print('***',t.result())

# ftp
# 并发编程

猜你喜欢

转载自blog.csdn.net/qq_34755081/article/details/82154542
今日推荐