Netty源码解析之NioEventLoop

版权声明:本文为博主原创文章,转载请注明出处。 https://blog.csdn.net/heroqiang/article/details/81510132

阅读须知

  • Netty版本:4.1.14.Final
  • 文章中使用/* */注释的方法会做深入分析

正文

Netty的EventLoop主要用于处理I/O操作,而NioEventLoop就是EventLoop的主要实现之一,它将Channel注册到Selector,因此在事件循环中可以对这些进行多路复用。我们首先来看NioEventLoop的层次结构:
这里写图片描述
我们来看它的构造方法:

NioEventLoop(NioEventLoopGroup parent, Executor executor, SelectorProvider selectorProvider,
        SelectStrategy strategy, RejectedExecutionHandler rejectedExecutionHandler) {
    // 调用父类构造方法初始化任务队列和各个属性
    super(parent, executor, false, DEFAULT_MAX_PENDING_TASKS, rejectedExecutionHandler);
    if (selectorProvider == null) {
        throw new NullPointerException("selectorProvider");
    }
    if (strategy == null) {
        throw new NullPointerException("selectStrategy");
    }
    provider = selectorProvider;
    /* 开启多路复用器 */
    final SelectorTuple selectorTuple = openSelector();
    selector = selectorTuple.selector;
    unwrappedSelector = selectorTuple.unwrappedSelector;
    selectStrategy = strategy;
}

NioEventLoop:

private SelectorTuple openSelector() {
    final Selector unwrappedSelector;
    try {
        unwrappedSelector = provider.openSelector();
    } catch (IOException e) {
        throw new ChannelException("failed to open a new selector", e);
    }
    if (DISABLE_KEYSET_OPTIMIZATION) {
        return new SelectorTuple(unwrappedSelector);
    }
    final SelectedSelectionKeySet selectedKeySet = new SelectedSelectionKeySet();
    Object maybeSelectorImplClass = AccessController.doPrivileged(new PrivilegedAction < Object > () {
        @Override
        public Object run() {
            try {
                return Class.forName(
                    "sun.nio.ch.SelectorImpl",
                    false,
                    PlatformDependent.getSystemClassLoader());
            } catch (Throwable cause) {
                return cause;
            }
        }
    });
    if (!(maybeSelectorImplClass instanceof Class) ||
        !((Class << ? > ) maybeSelectorImplClass).isAssignableFrom(unwrappedSelector.getClass())) {
        if (maybeSelectorImplClass instanceof Throwable) {
            Throwable t = (Throwable) maybeSelectorImplClass;
            logger.trace("failed to instrument a special java.util.Set into: {}", unwrappedSelector, t);
        }
        return new SelectorTuple(unwrappedSelector);
    }
    final Class << ? > selectorImplClass = (Class << ? > ) maybeSelectorImplClass;
    Object maybeException = AccessController.doPrivileged(new PrivilegedAction < Object > () {
        @Override
        public Object run() {
            try {
                Field selectedKeysField = selectorImplClass.getDeclaredField("selectedKeys");
                Field publicSelectedKeysField = selectorImplClass.getDeclaredField("publicSelectedKeys");
                Throwable cause = ReflectionUtil.trySetAccessible(selectedKeysField);
                if (cause != null) {
                    return cause;
                }
                cause = ReflectionUtil.trySetAccessible(publicSelectedKeysField);
                if (cause != null) {
                    return cause;
                }
                selectedKeysField.set(unwrappedSelector, selectedKeySet);
                publicSelectedKeysField.set(unwrappedSelector, selectedKeySet);
                return null;
            } catch (NoSuchFieldException e) {
                return e;
            } catch (IllegalAccessException e) {
                return e;
            }
        }
    });
    if (maybeException instanceof Exception) {
        selectedKeys = null;
        Exception e = (Exception) maybeException;
        logger.trace("failed to instrument a special java.util.Set into: {}", unwrappedSelector, e);
        return new SelectorTuple(unwrappedSelector);
    }
    selectedKeys = selectedKeySet;
    logger.trace("instrumented a special java.util.Set into: {}", unwrappedSelector);
    return new SelectorTuple(unwrappedSelector,
        new SelectedSelectionKeySetSelector(unwrappedSelector, selectedKeySet));
}

方法很长,首先调用JDK NIO的API开启Selector,剩余核心逻辑就是根据设置来判断是否采取selectedKeys优化功能。

在上面的结构图中我们看到,NioEventLoop还实现了JDK的Executor,熟悉线程池的同学对这个接口一定不陌生,所以NioEventLoop也同样可以执行Runnable任务,在Netty中NioEventLoop主要负责执行一些系统任务和定时任务,我们来看相关方法实现:
SingleThreadEventExecutor:

public void execute(Runnable task) {
    if (task == null) {
        throw new NullPointerException("task");
    }
    // 判断当前线程是否是当前EventLoop中的线程
    boolean inEventLoop = inEventLoop();
    if (inEventLoop) {
        // 添加任务到队列中等待执行,添加失败走拒绝策略
        addTask(task);
    } else {
        startThread(); /* 启动线程 */
        // 添加任务到队列中等待执行,添加失败走拒绝策略
        addTask(task);
        if (isShutdown() && removeTask(task)) {
            // 如果线程已关闭并且成功从队列中移除了任务,则抛出异常拒绝任务
            reject();
        }
    }
    // addTaskWakesUp在NioEventLoop构造方法中传入的是false
    // 判断task是否不是NonWakeupRunnable类型
    if (!addTaskWakesUp && wakesUpForTask(task)) {
        /* 唤醒selector */
        wakeup(inEventLoop);
    }
}

先来看wakeup方法的实现:
NioEventLoop:

protected void wakeup(boolean inEventLoop) {
    if (!inEventLoop && wakenUp.compareAndSet(false, true)) {
        // 可以让尚未返回的第一个select操作立即返回
        selector.wakeup();
    }
}

NioEventLoop:

private void startThread() {
    if (state == ST_NOT_STARTED) {
        // CAS变更线程状态,保证只有一次成功
        if (STATE_UPDATER.compareAndSet(this, ST_NOT_STARTED, ST_STARTED)) {
            /* 启动线程 */
            doStartThread();
        }
    }
}

SingleThreadEventExecutor:

private void doStartThread() {
    assert thread == null;
    executor.execute(new Runnable() {
        @Override
        public void run() {
            thread = Thread.currentThread();
            if (interrupted) {
                thread.interrupt();
            }
            boolean success = false;
            updateLastExecutionTime();
            try {
                /* 子类实现run方法实现任务逻辑 */
                SingleThreadEventExecutor.this.run();
                success = true;
            } catch (Throwable t) {
                logger.warn("Unexpected exception from an event executor: ", t);
            } finally {
                // 自旋更新线程状态为关闭
                for (;;) {
                    int oldState = state;
                    if (oldState >= ST_SHUTTING_DOWN || STATE_UPDATER.compareAndSet(
                            SingleThreadEventExecutor.this, oldState, ST_SHUTTING_DOWN)) {
                        break;
                    }
                }
                if (success && gracefulShutdownStartTime == 0) {
                    logger.error("Buggy " + EventExecutor.class.getSimpleName() + " implementation; " +
                        SingleThreadEventExecutor.class.getSimpleName() + ".confirmShutdown() must be called " +
                        "before run() implementation terminates.");
                }
                try {
                    for (;;) {
                        // 运行所有剩余的任务和关闭钩子
                        if (confirmShutdown()) {
                            break;
                        }
                    }
                } finally {
                    try {
                        // 子类实现清理操作,默认空实现
                        // NioEventLoop实现的清理操作就是关闭selector
                        cleanup();
                    } finally {
                        // 更新线程状态为终止
                        STATE_UPDATER.set(SingleThreadEventExecutor.this, ST_TERMINATED);
                        threadLock.release(); // 释放线程锁
                        if (!taskQueue.isEmpty()) {
                            logger.warn(
                                "An event executor terminated with " +
                                "non-empty task queue (" + taskQueue.size() + ')');
                        }
                        terminationFuture.setSuccess(null);
                    }
                }
            }
        }
    });
}

NioEventLoop:

protected void run() {
    for (;;) {
        try {
            switch (selectStrategy.calculateStrategy(selectNowSupplier, hasTasks())) {
                case SelectStrategy.CONTINUE:
                    continue;
                case SelectStrategy.SELECT:
                    /* select操作 */
                    select(wakenUp.getAndSet(false));
                    if (wakenUp.get()) {
                        selector.wakeup();
                    }
                default:
            }
            cancelledKeys = 0;
            needsToSelectAgain = false;
            // ioRatio的含义是event loop中I/O所需时间的百分比
            // 默认值为50,这意味着event loop将尝试花费与非I/O任务相同的I/O时间
            final int ioRatio = this.ioRatio;
            if (ioRatio == 100) {
                try {
                    /* 处理selectKey */
                    processSelectedKeys();
                } finally {
                    /* 确保我们一直运行任务 */
                    runAllTasks();
                }
            } else {
                final long ioStartTime = System.nanoTime();
                try {
                    /* 处理selectKey */
                    processSelectedKeys();
                } finally {
                    final long ioTime = System.nanoTime() - ioStartTime;
                    /* 确保我们一直运行任务,有超时时间 */
                    runAllTasks(ioTime * (100 - ioRatio) / ioRatio);
                }
            }
        } catch (Throwable t) {
            handleLoopException(t);
        }
        // 即使循环处理引发异常,也始终处理shutdown
        try {
            if (isShuttingDown()) {
                /* 关闭所有Channel */
                closeAll();
                /* 确认shutdown */
                if (confirmShutdown()) {
                    return;
                }
            }
        } catch (Throwable t) {
            handleLoopException(t);
        }
    }
}

下面我们就来分析比较关键的select操作:
NioEventLoop:

private void select(boolean oldWakenUp) throws IOException {
    Selector selector = this.selector;
    try {
        int selectCnt = 0;
        long currentTimeNanos = System.nanoTime();
        // 计算下一个将要触发的定时任务的超时时间
        // delayNanos方法会获取到下一个定时任务的触发时间
        long selectDeadLineNanos = currentTimeNanos + delayNanos(currentTimeNanos);
        for (;;) {
            // 为超时时间增加五毫秒的调整值
            long timeoutMillis = (selectDeadLineNanos - currentTimeNanos + 500000 L) / 1000000 L;
            if (timeoutMillis <= 0) {
                if (selectCnt == 0) {
                    // 如果需要立即执行或者已经超时,则执行轮询操作
                    selector.selectNow();
                    // select计数器置为1
                    selectCnt = 1;
                }
                break;
            }
            // 如果在wakenUp值为true时提交了任务,则该任务没有机会调用Selector的wakeup方法
            // 所以我们需要在执行select操作之前再次检查任务队列
            // 如果我们不这样做,那么任务可能会被挂起,直到select操作超时
            // 如果IdleStateHandler存在于pipeline中,它可能会被挂起直到idle timeout
            if (hasTasks() && wakenUp.compareAndSet(false, true)) {
                selector.selectNow();
                selectCnt = 1;
                break;
            }
            // 剩余的超时时间作为参数调用Seletor的select方法
            int selectedKeys = selector.select(timeoutMillis);
            // 自增select计数器
            selectCnt++;
            if (selectedKeys != 0 || oldWakenUp || wakenUp.get() || hasTasks() || hasScheduledTasks()) {
                // 以下情况退出当前循环
                // 1、select操作selectedKeys不为0,说明有读写事件需要处理
                // 2、由用户唤醒多路复用器或任务队列具有待处理任务
                // 3、定时任务已准备好进行处理
                break;
            }
            if (Thread.interrupted()) {
                // 线程被中断,因此重置selected keys并退出循环,这样就不会在繁忙的循环中执行
                // 由于这很可能是用户或其客户端库的处理程序中的错误,我们也会记录它
                if (logger.isDebugEnabled()) {
                    logger.debug("Selector.select() returned prematurely because " +
                        "Thread.currentThread().interrupt() was called. Use " +
                        "NioEventLoop.shutdownGracefully() to shutdown the NioEventLoop.");
                }
                selectCnt = 1;
                break;
            }
            long time = System.nanoTime();
            if (time - TimeUnit.MILLISECONDS.toNanos(timeoutMillis) >= currentTimeNanos) {
                // timeoutMillis已过,select没有任何内容
                selectCnt = 1;
            } else if (SELECTOR_AUTO_REBUILD_THRESHOLD > 0 &&
                selectCnt >= SELECTOR_AUTO_REBUILD_THRESHOLD) {
                // selector连续多次select没有内容,有可能触发了JDK NIO epoll死循环导致CPU 100%的bug
                // 重建selector解决
                logger.warn(
                    "Selector.select() returned prematurely {} times in a row; rebuilding Selector {}.",
                    selectCnt, selector);
                /* 重建selector */
                rebuildSelector();
                selector = this.selector;
                // 再次select以填充selectedKeys
                selector.selectNow();
                selectCnt = 1;
                break;
            }
            currentTimeNanos = time;
        }
        if (selectCnt > MIN_PREMATURE_SELECTOR_RETURNS) {
            if (logger.isDebugEnabled()) {
                logger.debug("Selector.select() returned prematurely {} times in a row for Selector {}.",
                    selectCnt - 1, selector);
            }
        }
    } catch (CancelledKeyException e) {
        if (logger.isDebugEnabled()) {
            logger.debug(CancelledKeyException.class.getSimpleName() + " raised by a Selector {} - JDK bug?",
                selector, e);
        }
    }
}

NioEventLoop:

public void rebuildSelector() {
    if (!inEventLoop()) {
        execute(new Runnable() {
            @Override
            public void run() {
                /* 当前线程不在event loop中,向executor提交新任务来重建selector */
                rebuildSelector0();
            }
        });
        return;
    }
    /* 重建selector */
    rebuildSelector0();
}

NioEventLoop:

private void rebuildSelector0() {
    final Selector oldSelector = selector;
    final SelectorTuple newSelectorTuple;
    if (oldSelector == null) {
        return;
    }
    try {
        // 创建新的selector
        newSelectorTuple = openSelector();
    } catch (Exception e) {
        logger.warn("Failed to create a new Selector.", e);
        return;
    }
    // 注册所有的channel到新的selector
    int nChannels = 0;
    for (SelectionKey key: oldSelector.keys()) {
        Object a = key.attachment();
        try {
            if (!key.isValid() || key.channel().keyFor(newSelectorTuple.unwrappedSelector) != null) {
                continue;
            }
            int interestOps = key.interestOps();
            // 取消select key并取消channel在selector上的注册
            key.cancel();
            // 将channel注册到新的selector
            SelectionKey newKey = key.channel().register(newSelectorTuple.unwrappedSelector, interestOps, a);
            if (a instanceof AbstractNioChannel) {
                ((AbstractNioChannel) a).selectionKey = newKey;
            }
            nChannels++;
        } catch (Exception e) {
            logger.warn("Failed to re-register a Channel to the new Selector.", e);
            if (a instanceof AbstractNioChannel) {
                AbstractNioChannel ch = (AbstractNioChannel) a;
                ch.unsafe().close(ch.unsafe().voidPromise());
            } else {
                @SuppressWarnings("unchecked")
                NioTask < SelectableChannel > task = (NioTask < SelectableChannel > ) a;
                invokeChannelUnregistered(task, key, e);
            }
        }
    }
    selector = newSelectorTuple.selector;
    unwrappedSelector = newSelectorTuple.unwrappedSelector;
    try {
        // 关闭旧的selector,因为所有channel已经注册到新的selector
        oldSelector.close();
    } catch (Throwable t) {
        if (logger.isWarnEnabled()) {
            logger.warn("Failed to close the old Selector.", t);
        }
    }
    logger.info("Migrated " + nChannels + " channel(s) to the new Selector.");
}

这样,select方法就分析完成了,接下来肯定就是select key的处理了:
NioEventLoop:

private void processSelectedKeys() {
    if (selectedKeys != null) {
        /* 开启优化的select key处理 */
        processSelectedKeysOptimized();
    } else {
        // 不开启优化的select key处理
        processSelectedKeysPlain(selector.selectedKeys());
    }
}

两个分支处理select key的逻辑是比较相似的,我们以开启优化的方式为例:
NioEventLoop:

private void processSelectedKeysOptimized() {
    for (int i = 0; i < selectedKeys.size; ++i) {
        final SelectionKey k = selectedKeys.keys[i];
        // 将数组中已经取出的元素置为null,以便channel关闭时GC掉
        selectedKeys.keys[i] = null;
        final Object a = k.attachment();
        if (a instanceof AbstractNioChannel) {
            /* 处理select key */
            processSelectedKey(k, (AbstractNioChannel) a);
        } else {
            @SuppressWarnings("unchecked")
            NioTask < SelectableChannel > task = (NioTask < SelectableChannel > ) a;
            processSelectedKey(k, task);
        }
        // needsToSelectAgain变量在run方法进入之前置为false
        if (needsToSelectAgain) {
            // 这里也是为了GC
            selectedKeys.reset(i + 1);
            // 如果需要再次select则再次调用selecor的selectNow方法
            selectAgain();
            i = -1;
        }
    }
}

NioEventLoop:

private void processSelectedKey(SelectionKey k, AbstractNioChannel ch) {
    final AbstractNioChannel.NioUnsafe unsafe = ch.unsafe();
    if (!k.isValid()) {
        final EventLoop eventLoop;
        try {
            eventLoop = ch.eventLoop();
        } catch (Throwable ignored) {
            // 如果Channel实现因为没有event loop而抛出异常,我们会忽略它
            // 因为我们只是试图确定channel是否已注册到此event loop,因此有权关闭channel
            return;
        }
        // 如果channel仍然注册到此EventLoop,则仅关闭channel
        // channel可以从event loop中取消注册,因此SelectionKey可以作为注销过程的一部分被取消
        // 但是该channel仍然是健康的,不应该关闭
        if (eventLoop != this || eventLoop == null) {
            return;
        }
        // 如果SelectionKey无效则关闭channel
        unsafe.close(unsafe.voidPromise());
        return;
    }
    try {
        int readyOps = k.readyOps();
        // 我们首先需要在尝试触发read或write之前调用finishConnect
        // 否则NIO JDK channel实现可能会抛出NotYetConnectedException
        if ((readyOps & SelectionKey.OP_CONNECT) != 0) {
            // 移除OP_CONNECT,否则Selector.select将始终返回而不会阻塞
            int ops = k.interestOps();
            ops &= ~SelectionKey.OP_CONNECT;
            k.interestOps(ops);
            unsafe.finishConnect();
        }
        // 首先处理OP_WRITE,因为我们可以编写一些排队的缓冲区,因此可以释放内存
        if ((readyOps & SelectionKey.OP_WRITE) != 0) {
            // 调用forceFlush,一旦没有什么可写的,它也将清除OP_WRITE
            ch.unsafe().forceFlush();
        }
        // 同时检查readOps为0以解决可能导致死循环的JDK bug
        if ((readyOps & (SelectionKey.OP_READ | SelectionKey.OP_ACCEPT)) != 0 || readyOps == 0) {
            // 读操作
            unsafe.read();
        }
    } catch (CancelledKeyException ignored) {
        // 异常关闭channel
        unsafe.close(unsafe.voidPromise());
    }
}

这里的各种对Channel的操作,如close、read等,我们在分析ServerSocketChannel的相关源码中分析过,这里不再重复。处理完select key之后,需要在finally块中保证任务一直运行:
SingleThreadEventExecutor:

protected boolean runAllTasks(long timeoutNanos) {
    /* 从定时任务队列中获取任务 */
    fetchFromScheduledTaskQueue();
    // 从队列中轮询task,并且会检查是否需要重新select
    Runnable task = pollTask();
    if (task == null) {
        // 子类扩展实现任务执行结束之后的操作
        // SingleThreadEventLoop覆盖此方法完成自己维护的tailTasks队列中任务的执行
        afterRunningAllTasks();
        return false;
    }
    // 计算过期时间
    final long deadline = ScheduledFutureTask.nanoTime() + timeoutNanos;
    long runTasks = 0;
    long lastExecutionTime;
    for (;;) {
        // 执行task的run方法,会捕捉异常避免抛出对上层的影响
        safeExecute(task);
        runTasks++;
        // 每64个任务检查超时,因为nanoTime相对昂贵
        if ((runTasks & 0x3F) == 0) {
            lastExecutionTime = ScheduledFutureTask.nanoTime();
            // 超时退出循环
            if (lastExecutionTime >= deadline) {
                break;
            }
        }
        // 继续从队列中获取任务
        task = pollTask();
        if (task == null) {
            // 获取不到任务记录最后的执行时间并退出循环
            lastExecutionTime = ScheduledFutureTask.nanoTime();
            break;
        }
    }
    // 同样子类扩展实现任务执行结束之后的操作
    afterRunningAllTasks();
    this.lastExecutionTime = lastExecutionTime;
    return true;
}

SingleThreadEventExecutor:

private boolean fetchFromScheduledTaskQueue() {
    long nanoTime = AbstractScheduledEventExecutor.nanoTime();
    // 从scheduledTaskQueue中获取任务
    Runnable scheduledTask = pollScheduledTask(nanoTime);
    while (scheduledTask != null) {
        // 取出任务放入taskQueue中
        if (!taskQueue.offer(scheduledTask)) {
            // 任务队列中没有剩余空间将其添加回scheduledTaskQueue,因此我们可以再次提取它
            scheduledTaskQueue().add((ScheduledFutureTask << ? > ) scheduledTask);
            return false;
        }
        // 继续循环获取任务
        scheduledTask = pollScheduledTask(nanoTime);
    }
    return true;
}

回到run方法,接下来就是shutdown流程了:
NioEventLoop:

private void closeAll() {
    selectAgain();
    Set < SelectionKey > keys = selector.keys();
    Collection < AbstractNioChannel > channels = new ArrayList < AbstractNioChannel > (keys.size());
    for (SelectionKey k: keys) {
        // 循环从SelectionKey中获取channel放入channels集合中
        Object a = k.attachment();
        if (a instanceof AbstractNioChannel) {
            channels.add((AbstractNioChannel) a);
        } else {
            k.cancel();
            @SuppressWarnings("unchecked")
            NioTask < SelectableChannel > task = (NioTask < SelectableChannel > ) a;
            invokeChannelUnregistered(task, k, null);
        }
    }
    // 遍历channels集合关闭channel
    for (AbstractNioChannel ch: channels) {
        ch.unsafe().close(ch.unsafe().voidPromise());
    }
}

NioEventLoop:

protected boolean confirmShutdown() {
    if (!isShuttingDown()) {
        return false;
    }
    if (!inEventLoop()) {
        throw new IllegalStateException("must be invoked from an event loop");
    }
    /* 取消定时任务 */
    cancelScheduledTasks();
    // gracefulShutdownStartTime为优雅停机开始时间
    if (gracefulShutdownStartTime == 0) {
        gracefulShutdownStartTime = ScheduledFutureTask.nanoTime();
    }
    // 运行所有剩余的定时任务,并运行关闭钩子
    if (runAllTasks() || runShutdownHooks()) {
        if (isShutdown()) {
            return true;
        }
        // gracefulShutdownQuietPeriod为安静期
        // 队列中有任务,稍等一会,直到没有任务排队等待安静期,或者如果安静期为0则终止
        if (gracefulShutdownQuietPeriod == 0) {
            return true;
        }
        // 这里的wakeup方法上文已经分析过
        wakeup(true);
        return false;
    }
    final long nanoTime = ScheduledFutureTask.nanoTime();
    if (isShutdown() || nanoTime - gracefulShutdownStartTime > gracefulShutdownTimeout) {
        return true;
    }
    if (nanoTime - lastExecutionTime <= gracefulShutdownQuietPeriod) {
        // 每100ms检查是否有任何任务添加到队列中
        wakeup(true);
        try {
            Thread.sleep(100);
        } catch (InterruptedException e) {
        }
        return false;
    }
    // 在最后的安静期没有添加任务,希望可以安全地关闭
    return true;
}

到这里,NioEventLoop的源码解析就完成了。

猜你喜欢

转载自blog.csdn.net/heroqiang/article/details/81510132