阅读Keras官方文档

常用层

http://keras-cn.readthedocs.io/en/latest/layers/core_layer/

Dense层

keras.layers.core.Dense(units, activation=None, use_bias=True, kernel_initializer='glorot_uniform', bias_initializer='zeros', kernel_regularizer=None, bias_regularizer=None, activity_regularizer=None, kernel_constraint=None, bias_constraint=None)

Dense就是常用的全连接层,所实现的运算是output = activation(dot(input, kernel)+bias)。其中activation是逐元素计算的激活函数,kernel是本层的权值矩阵,bias为偏置向量,只有当use_bias=True才会添加。

如果本层的输入数据的维度大于2,则会先被压为与kernel相匹配的大小。

参数:

  • units:大于0的整数,代表该层的输出维度。
  • activation:激活函数,为预定义的激活函数名,或逐元素(element-wise)的Theano函数。如果不指定该参数,将不会使用任何激活函数(即使用线性激活函数:a(x)=x)
  • use_bias: 布尔值,是否使用偏置项
  • kernel_initializer:权值初始化方法,为预定义初始化方法名的字符串,或用于初始化权重的初始化器。
  • bias_initializer:偏置向量初始化方法,为预定义初始化方法名的字符串,或用于初始化偏置向量的初始化器
  • kernel_regularizer:施加在权重上的正则项,为Regularizer对象
  • bias_regularizer:施加在偏置向量上的正则项,为Regularizer对象
  • activity_regularizer:施加在输出上的正则项,为Regularizer对象
  • kernel_constraints:施加在权重上的约束项,为Constraints对象
  • bias_constraints:施加在偏置上的约束项,为Constraints对象

输入

形如(batch_size, …, input_dim)的nD张量,最常见的情况为(batch_size, input_dim)的2D张量

输出

形如(batch_size, …, units)的nD张量,最常见的情况为(batch_size, units)的2D张量


Activation层

keras.layers.core.Activation(activation)

激活层对一个层的输出施加激活函数

参数

  • activation:将要使用的激活函数,为预定义激活函数名或一个Tensorflow/Theano的函数。

输入shape

任意,当使用激活层作为第一层时,要指定input_shape

输出shape

与输入shape相同


Dropout层

keras.layers.core.Dropout(rate, noise_shape=None, seed=None)

为输入数据施加Dropout。Dropout将在训练过程中每次更新参数时按一定概率(rate)随机断开输入神经元,Dropout层用于防止过拟合。 dropout是指每个神经元使不使用的概率,而不是简单的比例

参数

  • rate:0~1的浮点数,控制需要断开的神经元的比例
  • noise_shape:整数张量,为将要应用在输入上的二值Dropout mask的shape,例如你的输入为(batch_size, timesteps, features),并且你希望在各个时间步上的Dropout mask都相同,则可传入noise_shape=(batch_size, 1, features)。
  • seed:整数,使用的随机数种子

Flatten层

keras.layers.core.Flatten()

Flatten层用来将输入“压平”,即把多维的输入一维化,常用在从卷积层到全连接层的过渡。Flatten不影响batch的大小。

例子

model = Sequential()
model.add(Convolution2D(64, 3, 3,
            border_mode='same',
            input_shape=(3, 32, 32)))
# now: model.output_shape == (None, 64, 32, 32)

model.add(Flatten())
# now: model.output_shape == (None, 65536)

Reshape层

keras.layers.core.Reshape(target_shape)

Reshape层用来将输入shape转换为特定的shape

参数

  • target_shape:目标shape,为整数的tuple,不包含样本数目的维度(batch大小)

输入shape

任意,但输入的shape必须固定。当使用该层为模型首层时,需要指定input_shape参数

输出shape

(batch_size,)+target_shape

例子

# as first layer in a Sequential model
model = Sequential()
model.add(Reshape((3, 4), input_shape=(12,)))
# now: model.output_shape == (None, 3, 4)
# note: `None` is the batch dimension

# as intermediate layer in a Sequential model
model.add(Reshape((6, 2)))
# now: model.output_shape == (None, 6, 2)

# also supports shape inference using `-1` as dimension
model.add(Reshape((-1, 2, 2)))
# now: model.output_shape == (None, 3, 2, 2)

GRU层

keras.layers.recurrent.GRU(units, activation='tanh', recurrent_activation='hard_sigmoid', use_bias=True, kernel_initializer='glorot_uniform', recurrent_initializer='orthogonal', bias_initializer='zeros', kernel_regularizer=None, recurrent_regularizer=None, bias_regularizer=None, activity_regularizer=None, kernel_constraint=None, recurrent_constraint=None, bias_constraint=None, dropout=0.0, recurrent_dropout=0.0)

门限循环单元(详见参考文献)

参数

  • units:输出维度
  • activation:激活函数,为预定义的激活函数名(参考激活函数
  • use_bias: 布尔值,是否使用偏置项
  • kernel_initializer:权值初始化方法,为预定义初始化方法名的字符串,或用于初始化权重的初始化器。参考initializers
  • recurrent_initializer:循环核的初始化方法,为预定义初始化方法名的字符串,或用于初始化权重的初始化器。参考initializers
  • bias_initializer:权值初始化方法,为预定义初始化方法名的字符串,或用于初始化权重的初始化器。参考initializers
  • kernel_regularizer:施加在权重上的正则项,为Regularizer对象
  • bias_regularizer:施加在偏置向量上的正则项,为Regularizer对象
  • recurrent_regularizer:施加在循环核上的正则项,为Regularizer对象
  • activity_regularizer:施加在输出上的正则项,为Regularizer对象
  • kernel_constraints:施加在权重上的约束项,为Constraints对象
  • recurrent_constraints:施加在循环核上的约束项,为Constraints对象
  • bias_constraints:施加在偏置上的约束项,为Constraints对象
  • dropout:0~1之间的浮点数,控制输入线性变换的神经元断开比例
  • recurrent_dropout:0~1之间的浮点数,控制循环状态的线性变换的神经元断开比例
  • 其他参数参考Recurrent的说明

循环层

LSTM层

keras.layers.recurrent.LSTM(units, activation='tanh', recurrent_activation='hard_sigmoid', use_bias=True, kernel_initializer='glorot_uniform', recurrent_initializer='orthogonal', bias_initializer='zeros', unit_forget_bias=True, kernel_regularizer=None, recurrent_regularizer=None, bias_regularizer=None, activity_regularizer=None, kernel_constraint=None, recurrent_constraint=None, bias_constraint=None, dropout=0.0, recurrent_dropout=0.0)

Keras长短期记忆模型,关于此算法的详情,请参考本教程

参数

  • units:输出维度
  • activation:激活函数,为预定义的激活函数名(参考激活函数
  • recurrent_activation: 为循环步施加的激活函数(参考激活函数
  • use_bias: 布尔值,是否使用偏置项
  • kernel_initializer:权值初始化方法,为预定义初始化方法名的字符串,或用于初始化权重的初始化器。参考initializers
  • recurrent_initializer:循环核的初始化方法,为预定义初始化方法名的字符串,或用于初始化权重的初始化器。参考initializers
  • bias_initializer:权值初始化方法,为预定义初始化方法名的字符串,或用于初始化权重的初始化器。参考initializers
  • kernel_regularizer:施加在权重上的正则项,为Regularizer对象
  • bias_regularizer:施加在偏置向量上的正则项,为Regularizer对象
  • recurrent_regularizer:施加在循环核上的正则项,为Regularizer对象
  • activity_regularizer:施加在输出上的正则项,为Regularizer对象
  • kernel_constraints:施加在权重上的约束项,为Constraints对象
  • recurrent_constraints:施加在循环核上的约束项,为Constraints对象
  • bias_constraints:施加在偏置上的约束项,为Constraints对象
  • dropout:0~1之间的浮点数,控制输入线性变换的神经元断开比例
  • recurrent_dropout:0~1之间的浮点数,控制循环状态的线性变换的神经元断开比例
  • 其他参数参考Recurrent的说明

Sequential模型

from keras.models import Sequential
from keras.layers import Dense, Activation
  • 可以通过向Sequential模型传递一个layer的list来构造该模型
model = Sequential([
Dense(32, units=784),  # 第一段就是加入 Dense 神经层。32 是输出的维度,784 是输入的维度。第一层传出的数据有 32 个feature,传给激活单元.
Activation('relu'),  # 经过激活函数之后,就变成了非线性的数据。
Dense(10),  # 然后再把这个数据传给下一个神经层,这个 Dense 我们定义它有 10 个输出的 feature。同样的,此处不需要再定义输入的维度,因为它接收的是上一层的输出。
Activation('softmax'),  ## 接下来再输入给下面的 softmax 函数,用来分类。
])
  • 可以通过.add()方法一个个的将layer加入模型中
model = Sequential()
model.add(Dense(32, input_shape=(784,)))
model.add(Activation('relu'))

指定输入数据的shape

模型需要知道输入数据的shape,因此,Sequential的第一层需要接受一个关于输入数据shape的参数,后面的各个层则可以自动的推导出中间数据的shape,因此不需要为每个层都指定这个参数。有几种方法来为第一层指定输入数据的shape。

  • 传递一个input_shape的关键字参数给第一层,input_shape是一个tuple类型的数据,其中也可以填入None,如果填入None则表示此位置可能是任何正整数。数据的batch大小不应包含在其中。
  • 有些2D层,如Dense,支持通过指定其输入维度input_dim来隐含的指定输入数据shape,是一个Int类型的数据。一些3D的时域层支持通过参数input_diminput_length来指定输入shape。
  • 如果你需要为输入指定一个固定大小的batch_size(常用于stateful RNN网络),可以传递batch_size参数到一个层中,例如你想指定输入张量的batch大小是32,数据shape是(6,8),则你需要传递batch_size=32input_shape=(6,8)
model = Sequential()
model.add(Dense(32, input_dim=784))

model = Sequential()
model.add(Dense(32, input_shape=(784,)))

编译

在训练模型之前,我们需要通过compile来对学习过程进行配置。compile接收三个参数:

  • 优化器optimizer:该参数可指定为已预定义的优化器名,如rmspropadagrad,或一个Optimizer类的对象
  • 损失函数loss:该参数为模型试图最小化的目标函数,它可为预定义的损失函数名,如categorical_crossentropymse,也可以为一个损失函数。
  • 指标列表metrics:对分类问题,我们一般将该列表设置为metrics=['accuracy']。指标可以是一个预定义指标的名字,也可以是一个用户定制的函数.指标函数应该返回单个张量,或一个完成metric_name - > metric_value映射的字典
# For a multi-class classification problem
model.compile(optimizer='rmsprop',
              loss='categorical_crossentropy',
              metrics=['accuracy'])

# For a binary classification problem
model.compile(optimizer='rmsprop',
              loss='binary_crossentropy',
              metrics=['accuracy'])

# For a mean squared error regression problem
model.compile(optimizer='rmsprop',
              loss='mse')

# For custom metrics
import keras.backend as K

def mean_pred(y_true, y_pred):
    return K.mean(y_pred)

model.compile(optimizer='rmsprop',
              loss='binary_crossentropy',
              metrics=['accuracy', mean_pred])

训练

Keras以Numpy数组作为输入数据和标签的数据类型。训练模型一般使用fit函数。下面是一些例子。

from keras.models import Sequential
from keras.layers import Dense, Activation

model = Sequential()
model.add(Dense(32, activation='relu', input_dim=100))  # 输出32维,输入100纬
model.add(Dense(1, activation='sigmoid'))  # 100  ->  1
info(model)
model.compile(optimizer='rmsprop',  # 优化器
              loss='binary_crossentropy',  # 损失函数
              metrics=['accuracy'])

# Generate dummy data
import numpy as np
data = np.random.random((1000, 100))
labels = np.random.randint(2, size=(1000, 1))

# Train the model, iterating on the data in batches of 32 samples
model.fit(data, labels, epochs=10, batch_size=32)
# For a single-input model with 10 classes (categorical classification):

model = Sequential()
model.add(Dense(32, activation='relu', input_dim=100))
model.add(Dense(10, activation='softmax'))
model.compile(optimizer='rmsprop',
              loss='categorical_crossentropy',
              metrics=['accuracy'])

# Generate dummy data
import numpy as np
data = np.random.random((1000, 100))
labels = np.random.randint(10, size=(1000, 1))

# Convert labels to categorical one-hot encoding
one_hot_labels = keras.utils.to_categorical(labels, num_classes=10)

# Train the model, iterating on the data in batches of 32 samples
model.fit(data, one_hot_labels, epochs=10, batch_size=32)

例子

这里是一些帮助你开始的例子

在Keras代码包的examples文件夹中,你将找到使用真实数据的示例模型:

  • CIFAR10 小图片分类:使用CNN和实时数据提升
  • IMDB 电影评论观点分类:使用LSTM处理成序列的词语
  • Reuters(路透社)新闻主题分类:使用多层感知器(MLP)
  • MNIST手写数字识别:使用多层感知器和CNN
  • 字符级文本生成:使用LSTM …

基于多层感知器的softmax多分类:

from keras.models import Sequential
from keras.layers import Dense, Dropout, Activation
from keras.optimizers import SGD

# Generate dummy data
import numpy as np
x_train = np.random.random((1000, 20))
y_train = keras.utils.to_categorical(np.random.randint(10, size=(1000, 1)), num_classes=10)
x_test = np.random.random((100, 20))
y_test = keras.utils.to_categorical(np.random.randint(10, size=(100, 1)), num_classes=10)

model = Sequential()
# Dense(64) is a fully-connected layer with 64 hidden units.
# in the first layer, you must specify the expected input data shape:
# here, 20-dimensional vectors.
model.add(Dense(64, activation='relu', input_dim=20))
model.add(Dropout(0.5))
model.add(Dense(64, activation='relu'))
model.add(Dropout(0.5))
model.add(Dense(10, activation='softmax'))  # softmax针对向量,映射到(0,1)区间,用于多分类

sgd = SGD(lr=0.01, decay=1e-6, momentum=0.9, nesterov=True)
model.compile(loss='categorical_crossentropy',
              optimizer=sgd,
              metrics=['accuracy'])

model.fit(x_train, y_train,
          epochs=20,
          batch_size=128)
score = model.evaluate(x_test, y_test, batch_size=128)

MLP的二分类:

import numpy as np
from keras.models import Sequential
from keras.layers import Dense, Dropout

# Generate dummy data
x_train = np.random.random((1000, 20))
y_train = np.random.randint(2, size=(1000, 1))
x_test = np.random.random((100, 20))
y_test = np.random.randint(2, size=(100, 1))

model = Sequential()
model.add(Dense(64, input_dim=20, activation='relu'))
model.add(Dropout(0.5))
model.add(Dense(64, activation='relu'))
model.add(Dropout(0.5))
model.add(Dense(1, activation='sigmoid'))  # sigmoid针对标量,映射到(0,1)区间,用于二分类

model.compile(loss='binary_crossentropy',
              optimizer='rmsprop',
              metrics=['accuracy'])
model.fit(x_train, y_train,
          epochs=20,
          batch_size=128)
score = model.evaluate(x_test, y_test, batch_size=128)

类似VGG的卷积神经网络:

import numpy as np
import keras
from keras.models import Sequential
from keras.layers import Dense, Dropout, Flatten
from keras.layers import Conv2D, MaxPooling2D
from keras.optimizers import SGD

# Generate dummy data
x_train = np.random.random((100, 100, 100, 3))
y_train = keras.utils.to_categorical(np.random.randint(10, size=(100, 1)), num_classes=10)
x_test = np.random.random((20, 100, 100, 3))
y_test = keras.utils.to_categorical(np.random.randint(10, size=(20, 1)), num_classes=10)

model = Sequential()
# input: 100x100 images with 3 channels -> (100, 100, 3) tensors.
# this applies 32 convolution filters of size 3x3 each.
model.add(Conv2D(32, (3, 3), activation='relu', input_shape=(100, 100, 3)))
model.add(Conv2D(32, (3, 3), activation='relu'))
model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(Dropout(0.25))

model.add(Conv2D(64, (3, 3), activation='relu'))
model.add(Conv2D(64, (3, 3), activation='relu'))
model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(Dropout(0.25))

model.add(Flatten())
model.add(Dense(256, activation='relu'))
model.add(Dropout(0.5))
model.add(Dense(10, activation='softmax'))

sgd = SGD(lr=0.01, decay=1e-6, momentum=0.9, nesterov=True)
model.compile(loss='categorical_crossentropy', optimizer=sgd)

model.fit(x_train, y_train, batch_size=32, epochs=10)
score = model.evaluate(x_test, y_test, batch_size=32)

使用LSTM的序列分类

from keras.models import Sequential
from keras.layers import Dense, Dropout
from keras.layers import Embedding
from keras.layers import LSTM

model = Sequential()
model.add(Embedding(max_features, output_dim=256))
model.add(LSTM(128))
model.add(Dropout(0.5))
model.add(Dense(1, activation='sigmoid'))

model.compile(loss='binary_crossentropy',
              optimizer='rmsprop',
              metrics=['accuracy'])

model.fit(x_train, y_train, batch_size=16, epochs=10)
score = model.evaluate(x_test, y_test, batch_size=16)

使用1D卷积的序列分类

from keras.models import Sequential
from keras.layers import Dense, Dropout
from keras.layers import Embedding
from keras.layers import Conv1D, GlobalAveragePooling1D, MaxPooling1D

model = Sequential()
model.add(Conv1D(64, 3, activation='relu', input_shape=(seq_length, 100)))
model.add(Conv1D(64, 3, activation='relu'))
model.add(MaxPooling1D(3))
model.add(Conv1D(128, 3, activation='relu'))
model.add(Conv1D(128, 3, activation='relu'))
model.add(GlobalAveragePooling1D())
model.add(Dropout(0.5))
model.add(Dense(1, activation='sigmoid'))

model.compile(loss='binary_crossentropy',
              optimizer='rmsprop',
              metrics=['accuracy'])

model.fit(x_train, y_train, batch_size=16, epochs=10)
score = model.evaluate(x_test, y_test, batch_size=16)

用于序列分类的栈式LSTM

在该模型中,我们将三个LSTM堆叠在一起,是该模型能够学习更高层次的时域特征表示。

开始的两层LSTM返回其全部输出序列,而第三层LSTM只返回其输出序列的最后一步结果,从而其时域维度降低(即将输入序列转换为单个向量)

regular_stacked_lstm

from keras.models import Sequential
from keras.layers import LSTM, Dense
import numpy as np

data_dim = 16
timesteps = 8
num_classes = 10

# expected input data shape: (batch_size, timesteps, data_dim)
model = Sequential()
model.add(LSTM(32, return_sequences=True,
               input_shape=(timesteps, data_dim)))  # returns a sequence of vectors of dimension 32
model.add(LSTM(32, return_sequences=True))  # returns a sequence of vectors of dimension 32
model.add(LSTM(32))  # return a single vector of dimension 32
model.add(Dense(10, activation='softmax'))

model.compile(loss='categorical_crossentropy',
              optimizer='rmsprop',
              metrics=['accuracy'])

# Generate dummy training data
x_train = np.random.random((1000, timesteps, data_dim))
y_train = np.random.random((1000, num_classes))

# Generate dummy validation data
x_val = np.random.random((100, timesteps, data_dim))
y_val = np.random.random((100, num_classes))

model.fit(x_train, y_train,
          batch_size=64, epochs=5,
          validation_data=(x_val, y_val))

采用stateful LSTM的相同模型

stateful LSTM的特点是,在处理过一个batch的训练数据后,其内部状态(记忆)会被作为下一个batch的训练数据的初始状态。状态LSTM使得我们可以在合理的计算复杂度内处理较长序列

请FAQ中关于stateful LSTM的部分获取更多信息

from keras.models import Sequential
from keras.layers import LSTM, Dense
import numpy as np

data_dim = 16
timesteps = 8
num_classes = 10
batch_size = 32

# Expected input batch shape: (batch_size, timesteps, data_dim)
# Note that we have to provide the full batch_input_shape since the network is stateful.
# the sample of index i in batch k is the follow-up for the sample i in batch k-1.
model = Sequential()
model.add(LSTM(32, return_sequences=True, stateful=True,
               batch_input_shape=(batch_size, timesteps, data_dim)))
model.add(LSTM(32, return_sequences=True, stateful=True))
model.add(LSTM(32, stateful=True))
model.add(Dense(10, activation='softmax'))

model.compile(loss='categorical_crossentropy',
              optimizer='rmsprop',
              metrics=['accuracy'])

# Generate dummy training data
x_train = np.random.random((batch_size * 10, timesteps, data_dim))
y_train = np.random.random((batch_size * 10, num_classes))

# Generate dummy validation data
x_val = np.random.random((batch_size * 3, timesteps, data_dim))
y_val = np.random.random((batch_size * 3, num_classes))

model.fit(x_train, y_train,
          batch_size=batch_size, epochs=5, shuffle=False,
          validation_data=(x_val, y_val))

猜你喜欢

转载自blog.csdn.net/zhaohaibo_/article/details/81478050