LevelDB源码分析-TableBuilder生成sstable

TableBuilder生成sstable(include/table_builder.h table/table_builder.cc)

LevelDB使用TableBuilder来构建sstable。

sstable的格式为:

datablock1 | datablock2 | ... | metablock1 | metablock2 | ... | metaindexblock | indexblock | footer

datablock即为存储KV数据的块,metablock为相应datablock的元信息的块(并未实现),metaindexblock为metablock的索引块(并未实现),indexblock为datablock的索引块。

footer的数据格式为:

metablockhandle | indexblockhandle | padding | magic

metablockhandle为metaindexblock的索引,indexblockhandle为indexblock的索引,padding为了补全定长,magic为8字节的校验码。

TableBuilder类

TableBuilder类的定义为:

class LEVELDB_EXPORT TableBuilder
{
  public:
    // ...

    // Add key,value to the table being constructed.
    // REQUIRES: key is after any previously added key according to comparator.
    // REQUIRES: Finish(), Abandon() have not been called
    void Add(const Slice &key, const Slice &value);

    // Advanced operation: flush any buffered key/value pairs to file.
    // Can be used to ensure that two adjacent entries never live in
    // the same data block.  Most clients should not need to use this method.
    // REQUIRES: Finish(), Abandon() have not been called
    void Flush();

    // ...

    // Finish building the table.  Stops using the file passed to the
    // constructor after this function returns.
    // REQUIRES: Finish(), Abandon() have not been called
    Status Finish();

    // ...

  private:
    // ..
    void WriteBlock(BlockBuilder *block, BlockHandle *handle);
    void WriteRawBlock(const Slice &data, CompressionType, BlockHandle *handle);

    struct Rep;
    Rep *rep_;
};

TableBuilder的成员变量

TableBuilder只有一个类型为Rep *的成员变量rep_。

Rep结构

Rep对TableBuilder构建sstable的过程中的相关数据进行了封装:

struct TableBuilder::Rep
{
    Options options;
    Options index_block_options;
    WritableFile *file;
    uint64_t offset;
    Status status;
    BlockBuilder data_block;
    BlockBuilder index_block;
    std::string last_key;
    int64_t num_entries;
    bool closed; // Either Finish() or Abandon() has been called.
    FilterBlockBuilder *filter_block;

    // We do not emit the index entry for a block until we have seen the
    // first key for the next data block.  This allows us to use shorter
    // keys in the index block.  For example, consider a block boundary
    // between the keys "the quick brown fox" and "the who".  We can use
    // "the r" as the key for the index block entry since it is >= all
    // entries in the first block and < all entries in subsequent
    // blocks.
    //
    // Invariant: r->pending_index_entry is true only if data_block is empty.
    bool pending_index_entry;
    BlockHandle pending_handle; // Handle to add to index block

    std::string compressed_output;

    // ...
};

其中,file为保存sstable的文件,offset为文件中当前偏移的位置,data_block用于构建datablock,index_block用于构建indexblock,last_key为当前最后一个key,num_entries为sstable中entry数量,filter_block用于构建bloom filter,pending_handle用于构建block的索引(存入index_block中),compressed_output为压缩后的sstable。

这里用到了其他的一些辅助的结构,BlockBuilder在https://www.cnblogs.com/YuNanlong/p/9427787.html中已经分析过了。FilterBlockBuilder将在以后分析。

WritableFile类

WritableFile类为文件操作定义了接口:

class LEVELDB_EXPORT WritableFile
{
  public:
    WritableFile() = default;

    WritableFile(const WritableFile &) = delete;
    WritableFile &operator=(const WritableFile &) = delete;

    virtual ~WritableFile();

    virtual Status Append(const Slice &data) = 0;
    virtual Status Close() = 0;
    virtual Status Flush() = 0;
    virtual Status Sync() = 0;
};

具体实现在PosixWritableFile类中:

class PosixWritableFile : public WritableFile
{
  private:
    // buf_[0, pos_-1] contains data to be written to fd_.
    std::string filename_;
    int fd_;
    char buf_[kBufSize];
    size_t pos_;

  public:
    // ...

    virtual Status Append(const Slice &data)
    {
        size_t n = data.size();
        const char *p = data.data();

        // Fit as much as possible into buffer.
        size_t copy = std::min(n, kBufSize - pos_);
        memcpy(buf_ + pos_, p, copy);
        p += copy;
        n -= copy;
        pos_ += copy;
        if (n == 0)
        {
            return Status::OK();
        }

        // Can't fit in buffer, so need to do at least one write.
        Status s = FlushBuffered();
        if (!s.ok())
        {
            return s;
        }

        // Small writes go to buffer, large writes are written directly.
        if (n < kBufSize)
        {
            memcpy(buf_, p, n);
            pos_ = n;
            return Status::OK();
        }
        return WriteRaw(p, n);
    }

    virtual Status Close()
    {
        // ...
    }

    virtual Status Flush()
    {
        return FlushBuffered();
    }

    Status SyncDirIfManifest()
    {
        const char *f = filename_.c_str();
        const char *sep = strrchr(f, '/');
        Slice basename;
        std::string dir;
        if (sep == nullptr)
        {
            dir = ".";
            basename = f;
        }
        else
        {
            dir = std::string(f, sep - f);
            basename = sep + 1;
        }
        Status s;
        if (basename.starts_with("MANIFEST"))
        {
            int fd = open(dir.c_str(), O_RDONLY);
            if (fd < 0)
            {
                s = PosixError(dir, errno);
            }
            else
            {
                if (fsync(fd) < 0)
                {
                    s = PosixError(dir, errno);
                }
                close(fd);
            }
        }
        return s;
    }

    virtual Status Sync()
    {
        // Ensure new files referred to by the manifest are in the filesystem.
        Status s = SyncDirIfManifest();
        if (!s.ok())
        {
            return s;
        }
        s = FlushBuffered();
        if (s.ok())
        {
            if (fdatasync(fd_) != 0)
            {
                s = PosixError(filename_, errno);
            }
        }
        return s;
    }

  private:
    Status FlushBuffered()
    {
        // ...
    }

    Status WriteRaw(const char *p, size_t n)
    {
        // ... 
    }
};

其中filename_为文件名,int fd_为文件句柄,char buf_[kBufSize]为缓冲区,size_t pos_为当前缓冲区剩余空间起始位置的偏移。

Append函数用于写文件,如果缓冲区空间足够,则先将数据写入缓冲区,如果空间不够,则将当前缓冲区的内容刷入文件,然后看写入的数据是否大于缓冲区,如果大于缓冲区,则直接写入文件,否则也写入缓冲区。WriteRaw(const char *p, size_t n)调用write函数将数据写入文件。

Sync函数用于将file中没有被同步到硬盘的部分强制同步到硬盘上,而不是驻留在内存中,保证了持久化。这个函数首先调用SyncDirIfManifest函数将manifest文件写入硬盘(通过fsync函数),然后将缓冲区中的数据刷入文件,最后将文件写入硬盘(通过fsyncdata函数)。

BlockHandle类

BlockHandle类封装了sstable中block的索引:

class BlockHandle
{
  public:
    BlockHandle();

    // The offset of the block in the file.
    uint64_t offset() const { return offset_; }
    void set_offset(uint64_t offset) { offset_ = offset; }

    // The size of the stored block
    uint64_t size() const { return size_; }
    void set_size(uint64_t size) { size_ = size; }

    void EncodeTo(std::string *dst) const;
    Status DecodeFrom(Slice *input);

    // Maximum encoding length of a BlockHandle
    enum
    {
        kMaxEncodedLength = 10 + 10
    };

  private:
    uint64_t offset_;
    uint64_t size_;
};

其中offset_为block的偏移,size_为block的大小。EncodeTo函数将BlockHandle编码为字符串,DecodeFrom函数将Slice封装的数据解码为BlockHandle,以便于处理。

TableBuilder的成员变量

首先是Add函数:

void TableBuilder::Add(const Slice &key, const Slice &value)
{
    Rep *r = rep_;
    assert(!r->closed);
    if (!ok())
        return;
    if (r->num_entries > 0)
    {
        assert(r->options.comparator->Compare(key, Slice(r->last_key)) > 0);
    }

    if (r->pending_index_entry)
    {
        assert(r->data_block.empty());
        r->options.comparator->FindShortestSeparator(&r->last_key, key);
        std::string handle_encoding;
        r->pending_handle.EncodeTo(&handle_encoding);
        r->index_block.Add(r->last_key, Slice(handle_encoding));
        r->pending_index_entry = false;
    }

    if (r->filter_block != nullptr)
    {
        r->filter_block->AddKey(key);
    }

    r->last_key.assign(key.data(), key.size());
    r->num_entries++;
    r->data_block.Add(key, value);

    const size_t estimated_block_size = r->data_block.CurrentSizeEstimate();
    if (estimated_block_size >= r->options.block_size)
    {
        Flush();
    }
}

首先判断是否需要向index_block中添加索引,如果需要,则调用FindShortestSeparator函数根据last_key计算这个block的索引key值,并将pending_handle编码为字符串作为value值,然后存入index_block中。接下来向filter_block中添加key的映射,接着讲实际的KV值存入data_block,最后判断当前index_block的大小是否超过设定值,弱超过则调用Flush函数写入文件。这里值得注意的是FindShortestSeparator函数,LevelDB为了节省内存空间,在这里选取的key并不是last_key的key,而是只需要能够区分两个block就可以了。比如block和blrck之间只需要blp就可以区分。

Add函数调用了Flush函数:

void TableBuilder::Flush()
{
    Rep *r = rep_;
    assert(!r->closed);
    if (!ok())
        return;
    if (r->data_block.empty())
        return;
    assert(!r->pending_index_entry);
    WriteBlock(&r->data_block, &r->pending_handle);
    if (ok())
    {
        r->pending_index_entry = true;
        r->status = r->file->Flush();
    }
    if (r->filter_block != nullptr)
    {
        r->filter_block->StartBlock(r->offset);
    }
}

Flush函数首先调用WriteBlock函数将当前还未写入文件的block写入文件,然后使用r->file->Flush将文件强制写入磁盘。

Flush函数调用了WriteBlock函数:

void TableBuilder::WriteBlock(BlockBuilder *block, BlockHandle *handle)
{
    // File format contains a sequence of blocks where each block has:
    //    block_data: uint8[n]
    //    type: uint8
    //    crc: uint32
    assert(ok());
    Rep *r = rep_;
    Slice raw = block->Finish();

    Slice block_contents;
    CompressionType type = r->options.compression;
    // TODO(postrelease): Support more compression options: zlib?
    switch (type)
    {
    case kNoCompression:
        block_contents = raw;
        break;

    case kSnappyCompression:
    {
        std::string *compressed = &r->compressed_output;
        if (port::Snappy_Compress(raw.data(), raw.size(), compressed) &&
            compressed->size() < raw.size() - (raw.size() / 8u))
        {
            block_contents = *compressed;
        }
        else
        {
            // Snappy not supported, or compressed less than 12.5%, so just
            // store uncompressed form
            block_contents = raw;
            type = kNoCompression;
        }
        break;
    }
    }
    WriteRawBlock(block_contents, type, handle);
    r->compressed_output.clear();
    block->Reset();
}

WriteBlock函数首先通过block->Finish()向block中加入restarts和num_of_restarts,再根据设定选项对block进行压缩,最后通过WriteRawBlock函数写入文件。

WriteBlock函数调用了WriteRawBlock函数:

void TableBuilder::WriteRawBlock(const Slice &block_contents,
                                 CompressionType type,
                                 BlockHandle *handle)
{
    Rep *r = rep_;
    handle->set_offset(r->offset);
    handle->set_size(block_contents.size());
    r->status = r->file->Append(block_contents);
    if (r->status.ok())
    {
        char trailer[kBlockTrailerSize];
        trailer[0] = type;
        uint32_t crc = crc32c::Value(block_contents.data(), block_contents.size());
        crc = crc32c::Extend(crc, trailer, 1); // Extend crc to cover block type
        EncodeFixed32(trailer + 1, crc32c::Mask(crc));
        r->status = r->file->Append(Slice(trailer, kBlockTrailerSize));
        if (r->status.ok())
        {
            r->offset += block_contents.size() + kBlockTrailerSize;
        }
    }
}

WriteRawBlock函数通过r->file->Append将传入的除了type和crc之外的block中的数据存入文件,然后计算type和crc,属于同一批。

其次是Finish函数:

Status TableBuilder::Finish()
{
    Rep *r = rep_;
    Flush();
    assert(!r->closed);
    r->closed = true;

    BlockHandle filter_block_handle, metaindex_block_handle, index_block_handle;

    // Write filter block
    if (ok() && r->filter_block != nullptr)
    {
        WriteRawBlock(r->filter_block->Finish(), kNoCompression,
                      &filter_block_handle);
    }

    // Write metaindex block
    if (ok())
    {
        BlockBuilder meta_index_block(&r->options);
        if (r->filter_block != nullptr)
        {
            // Add mapping from "filter.Name" to location of filter data
            std::string key = "filter.";
            key.append(r->options.filter_policy->Name());
            std::string handle_encoding;
            filter_block_handle.EncodeTo(&handle_encoding);
            meta_index_block.Add(key, handle_encoding);
        }

        // TODO(postrelease): Add stats and other meta blocks
        WriteBlock(&meta_index_block, &metaindex_block_handle);
    }

    // Write index block
    if (ok())
    {
        if (r->pending_index_entry)
        {
            r->options.comparator->FindShortSuccessor(&r->last_key);
            std::string handle_encoding;
            r->pending_handle.EncodeTo(&handle_encoding);
            r->index_block.Add(r->last_key, Slice(handle_encoding));
            r->pending_index_entry = false;
        }
        WriteBlock(&r->index_block, &index_block_handle);
    }

    // Write footer
    if (ok())
    {
        Footer footer;
        footer.set_metaindex_handle(metaindex_block_handle);
        footer.set_index_handle(index_block_handle);
        std::string footer_encoding;
        footer.EncodeTo(&footer_encoding);
        r->status = r->file->Append(footer_encoding);
        if (r->status.ok())
        {
            r->offset += footer_encoding.size();
        }
    }
    return r->status;
}

Finish函数首先写入metaindexblock,然后又写入indexblock,最后写入footer。

228 Love u

猜你喜欢

转载自www.cnblogs.com/YuNanlong/p/9428156.html