Spark Streaming之窗口函数和状态转换函数

流处理主要有3种应用场景:无状态操作、window操作、状态操作。

reduceByKeyAndWindow

import kafka.serializer.StringDecoder
import org.apache.log4j.{Level, Logger}
import org.apache.spark.sql.SQLContext
import org.apache.spark.streaming.kafka.KafkaUtils
import org.apache.spark.streaming._
import org.apache.spark.{SparkContext, SparkConf}

object ClickStream {
  def main (args: Array[String]){
    // 屏蔽不必要的日志显示在终端上
    Logger.getLogger("org.apache.spark").setLevel(Level.WARN)
    Logger.getLogger("org.eclipse.jetty.server").setLevel(Level.OFF)

     //创建SparkConf对象,设置应用程序的名称,在程序运行的监控界面可以看到名称
    val conf = new SparkConf().setAppName("ClickStream").setMaster("local[*]")   
    val sc = new SparkContext(conf)

    //此处设置Batch Interval是在Spark Streaming中生成基本Job的时间单位,窗口和滑动时间间隔一定是该Batch Interval的整数倍
    val ssc = new StreamingContext(sc, Seconds(args(0).toLong))

    //由于用到了窗口函数,需要复用前面的RDD,必须checkpoint,注意复用的RDD之间是没有任何关系的
    ssc.checkpoint(args(1))

    val topics = Set("clickstream")    //所要获取数据在kafka上的主题
    val brokers = "yz4211.hadoop.data.sina.com.cn:19092,10.39.4.210:19092,yz4209.hadoop.data.sina.com.cn:19092,yz4208.hadoop.data.sina.com.cn:19092,yz4207.hadoop.data.sina.com.cn:19092,yz4206.hadoop.data.sina.com.cn:19092,10.39.4.214:19092,10.39.4.213:19092,10.39.4.220:19092,10.39.4.219:19092,10.39.4.218:19092,10.39.4.217:19092,10.39.4.216:19092,10.39.4.215:19092,yz4205.hadoop.data.sina.com.cn:19092,yz4204.hadoop.data.sina.com.cn:19092,yz4203.hadoop.data.sina.com.cn:19092,yz4202.hadoop.data.sina.com.cn:19092,10.39.4.212:19092,10.39.4.201:19092"
    val kafkaParams = Map[String, String]("metadata.broker.list" -> brokers)
    //val offset = "largest"    //values: smallest, largest ,控制读取最新的数据,还是旧的数据, 默认值为largest

    //从Spark1.3开始,我们能够使用如下方式高效地从kafka上获取数据
    val kvsTemp = KafkaUtils.createDirectStream[String, String, StringDecoder, StringDecoder](ssc, kafkaParams, topics)
    val kvs = kvsTemp.map(line => line._2)                 //第一部分是null为key,第二部分才是所需数据,为string类型

    //根据需求对流进来的数据进行清洗、转换等处理
    val data = kvs.map(_.split("\\t")).filter(_(53) == "finance").map(_(27)).map(_.split("\\?")(0)).filter(! _.contains("iframe")).map((_, 1))

    //滑动窗口长度为1小时,滑动间隔为10分钟,这会得到过去1小时内,url和pv的对应关系
    //val pvWindow = data.reduceByKeyAndWindow((v1: Int, v2: Int) => v1+v2, Minutes(60), Minutes(10))

     //滑动窗口长度为1小时,滑动间隔为10分钟,这同样会得到过去1小时内,url和pv的对应关系,只不过这是加新减旧,第一个参数加上新的,第2个参数,减去上一个batch的。和上一个版本的reduceByKeyAndWindow每次都会重新算相比(叠加方式),这种方式(增量方式)更加高效优雅
    val pvWindow = data.reduceByKeyAndWindow(_ + _, _ - _, Minutes(60), Minutes(10))   
    pvWindow.print()

    ssc.start()             // Start the computation
    ssc.awaitTermination()  // Wait for the computation to terminat
    ssc.stop(true, true)    //优雅地结束
  }
}

友情链接1

countByValueAndWindow

countByValueAndWindow的源码如下所示:

  /**
   * Return a new DStream in which each RDD contains the count of distinct elements in
   * RDDs in a sliding window over this DStream. Hash partitioning is used to generate
   * the RDDs with `numPartitions` partitions (Spark's default number of partitions if
   * `numPartitions` not specified).
   * @param windowDuration width of the window; must be a multiple of this DStream's
   *                       batching interval
   * @param slideDuration  sliding interval of the window (i.e., the interval after which
   *                       the new DStream will generate RDDs); must be a multiple of this
   *                       DStream's batching interval
   * @param numPartitions  number of partitions of each RDD in the new DStream.
   */
  def countByValueAndWindow(
      windowDuration: Duration,
      slideDuration: Duration,
      numPartitions: Int = ssc.sc.defaultParallelism)
      (implicit ord: Ordering[T] = null)
      : DStream[(T, Long)] = ssc.withScope {
    this.map((_, 1L)).reduceByKeyAndWindow(
      (x: Long, y: Long) => x + y,
      (x: Long, y: Long) => x - y,
      windowDuration,
      slideDuration,
      numPartitions,
      (x: (T, Long)) => x._2 != 0L
    )
  }

reduceByWindow

reduceByWindow的源码如下所示:

/**
   * Return a new DStream in which each RDD has a single element generated by reducing all
   * elements in a sliding window over this DStream. However, the reduction is done incrementally
   * using the old window's reduced value :
   *  1. reduce the new values that entered the window (e.g., adding new counts)
   *  2. "inverse reduce" the old values that left the window (e.g., subtracting old counts)
   *  This is more efficient than reduceByWindow without "inverse reduce" function.
   *  However, it is applicable to only "invertible reduce functions".
   * @param reduceFunc associative and commutative reduce function
   * @param invReduceFunc inverse reduce function; such that for all y, invertible x:
   *                      `invReduceFunc(reduceFunc(x, y), x) = y`
   * @param windowDuration width of the window; must be a multiple of this DStream's
   *                       batching interval
   * @param slideDuration  sliding interval of the window (i.e., the interval after which
   *                       the new DStream will generate RDDs); must be a multiple of this
   *                       DStream's batching interval
   */
  def reduceByWindow(
      reduceFunc: (T, T) => T,
      invReduceFunc: (T, T) => T,
      windowDuration: Duration,
      slideDuration: Duration
    ): DStream[T] = ssc.withScope {
      this.map((1, _))
          .reduceByKeyAndWindow(reduceFunc, invReduceFunc, windowDuration, slideDuration, 1)
          .map(_._2)
  }

countByWindow

countByWindow的源码如下所示:

  /**
   * Return a new DStream in which each RDD has a single element generated by counting the number
   * of elements in a sliding window over this DStream. Hash partitioning is used to generate
   * the RDDs with Spark's default number of partitions.
   * @param windowDuration width of the window; must be a multiple of this DStream's
   *                       batching interval
   * @param slideDuration  sliding interval of the window (i.e., the interval after which
   *                       the new DStream will generate RDDs); must be a multiple of this
   *                       DStream's batching interval
   */
  def countByWindow(
      windowDuration: Duration,
      slideDuration: Duration): DStream[Long] = ssc.withScope {
    this.map(_ => 1L).reduceByWindow(_ + _, _ - _, windowDuration, slideDuration)
  }

由此可见,countByValueAndWindow、reduceByWindow、countByWindow的底层实现都是“加新减旧”版本的reduceByKeyAndWindow。

上面,求出了每一小时窗口内的Url和Pv的对应关系,如果想求出相同的Url在上一个窗口的Pv和本次窗口的Pv的比值,那么这时侯updateStateByKey,mapWithState就粉墨登场了。由于updateStateByKey和mapWithState二者之间有10倍左右的性能差异。这里,只涉及mapWithState。

mapWithState

import kafka.serializer.StringDecoder
import org.apache.log4j.{Level, Logger}
import org.apache.spark.sql.SQLContext
import org.apache.spark.streaming.kafka.KafkaUtils
import org.apache.spark.streaming._
import org.apache.spark.{SparkContext, SparkConf}

object ClickStream {
  def main (args: Array[String]){
    // 屏蔽不必要的日志显示在终端上
    Logger.getLogger("org.apache.spark").setLevel(Level.WARN)
    Logger.getLogger("org.eclipse.jetty.server").setLevel(Level.OFF)

     //创建SparkConf对象,设置应用程序的名称,在程序运行的监控界面可以看到名称
    val conf = new SparkConf().setAppName("ClickStream").setMaster("local[*]")   
    val sc = new SparkContext(conf)

    //此处设置Batch Interval是在Spark Streaming中生成基本Job的时间单位,窗口和滑动时间间隔一定是该Batch Interval的整数倍
    val ssc = new StreamingContext(sc, Seconds(args(0).toLong))

    //由于用到了窗口函数,需要复用前面的RDD,必须checkpoint,注意复用的RDD之间是没有任何关系的
    ssc.checkpoint(args(1))

    val topics = Set("clickstream")    //所要获取数据在kafka上的主题
    val brokers = "yz4211.hadoop.data.sina.com.cn:19092,10.39.4.210:19092,yz4209.hadoop.data.sina.com.cn:19092,yz4208.hadoop.data.sina.com.cn:19092,yz4207.hadoop.data.sina.com.cn:19092,yz4206.hadoop.data.sina.com.cn:19092,10.39.4.214:19092,10.39.4.213:19092,10.39.4.220:19092,10.39.4.219:19092,10.39.4.218:19092,10.39.4.217:19092,10.39.4.216:19092,10.39.4.215:19092,yz4205.hadoop.data.sina.com.cn:19092,yz4204.hadoop.data.sina.com.cn:19092,yz4203.hadoop.data.sina.com.cn:19092,yz4202.hadoop.data.sina.com.cn:19092,10.39.4.212:19092,10.39.4.201:19092"
    val kafkaParams = Map[String, String]("metadata.broker.list" -> brokers)
    //val offset = "largest"    //values: smallest, largest ,控制读取最新的数据,还是旧的数据, 默认值为largest

    //从Spark1.3开始,我们能够使用如下方式高效地从kafka上获取数据
    val kvsTemp = KafkaUtils.createDirectStream[String, String, StringDecoder, StringDecoder](ssc, kafkaParams, topics)
    val kvs = kvsTemp.map(line => line._2)                 //第一部分是null为key,第二部分才是所需数据,为string类型

    //根据需求对流进来的数据进行清洗、转换等处理
    val data = kvs.map(_.split("\\t")).filter(_(53) == "finance").map(_(27)).map(_.split("\\?")(0)).filter(! _.contains("iframe")).map((_, 1))

    //滑动窗口长度为1小时,滑动间隔为10分钟,这会得到过去1小时内,url和pv的对应关系
    //val pvWindow = data.reduceByKeyAndWindow((v1: Int, v2: Int) => v1+v2, Minutes(60), Minutes(10))

     //滑动窗口长度为1小时,滑动间隔为10分钟,这同样会得到过去1小时内,url和pv的对应关系,只不过这是加新减旧,第一个参数加上新的,第2个参数,减去上一个batch的。和上一个版本的reduceByKeyAndWindow每次都会重新算相比(叠加方式),这种方式(增量方式)更加高效优雅
    val pvWindow = data.reduceByKeyAndWindow(_ + _, _ - _, Minutes(60), Minutes(10))

    //key是K, value是新值,state是原始值(本batch之前的状态值)。这里你需要把state更新为新值
    val mappingFunc = (key: String, value: Option[Int], state: State[Int]) => {
        val currentPV = value.getOrElse(0)
        val output = (key, currentPV, state.getOption().getOrElse(0))
        state.update(currentPV)
        output
      }

    //StateSpec只是一个包裹,实际操作仍然是定义的mappingFunc函数
    val urlPvs = pvWindow.mapWithState(StateSpec.function(mappingFunc))    //url,当前batch的PV,上一个batch的PV
    urlPvs.print()

    ssc.start()             // Start the computation
    ssc.awaitTermination()  // Wait for the computation to terminat
    ssc.stop(true, true)    //优雅地结束
  }
}

友情链接1

友情链接2

猜你喜欢

转载自blog.csdn.net/yitengtongweishi/article/details/74924065
今日推荐