LVM概念

LVM是逻辑盘卷管理(LogicalVolumeManager)的简称, 它由Heinz Mauelshagen在Linux 2.4内核上实现,是对Linux环境下对磁盘分区进行管理的一种机制,LVM是建立在硬盘和分区之上的一个逻辑层,来提高磁盘分区管理的灵活性, 相当于一个大硬盘来使用,当硬盘的空间不够使用的时候,可以继续将其它的硬盘的分区加入其中,这样可以事项一种磁盘空间的动态管理,相对于普通的磁盘分区有很大的灵活性,使用普通的磁盘分区,当一个磁盘的分区空间不够使用的时候,可能就会带来很大的麻烦。使用LVM在一定程度上就可以解决普通磁盘分区带来的问题。

LVM简介
通过创建LVM,我们可以更轻松的管理磁盘分区,将若干个不同大小的不同形式的磁盘整合为一个整块的卷组,然后在卷组上随意的创建逻辑卷,既避免了大量不同规格硬盘的管理难题,也使逻辑卷容量的扩充缩减不再受限于磁盘规格;并且LVM的snapshot(快照)功能给数据的物理备份提供了便捷可靠的方式

如下图:


由四个磁盘分区可以组成一个很大的空间,然后在这些空间上划分一些逻辑分区,当一个逻辑分区的空间不够用的时候,可以从剩余空间上划分一些空间给空间不够用的分区使用


从剩余空间中划分一部分的磁盘空间给一个分区
这样,当某一个分区的空间不够的时候,这样可以增加这个分区的使用磁盘空间

LVM工作方式

下面来看一看LVM到底是怎样工作的。每一个物理卷都被分成几个基本单元,即所谓的PE(Physical Extents)。PE的大小是可变的,但是必须和其所属卷组的物理卷相同。在每一个物理卷里,每一个PE都有一个惟一的编号。PE是一个物理存储里可以被LVM寻址的最小单元。
每一个逻辑卷也被分成一些可被寻址的基本单位,即所谓的LE(Logical Extents)。在同一个卷组中,LE的大小和PE是相同的,很显然,LE的大小对于一个卷组中的所有逻辑卷来说都是相同的。
在一个物理卷中,每一个PE都有一个惟一的编号,但是对于逻辑卷这并不一定是必需的。这是因为当这些PE ID号不能使用时,逻辑卷可以由一些物理卷组 成。因此,LE ID号是用于识别LE以及与之相关的特定PE的。正如前面所提到的,LE和PE之间是一一对应的。每一次存储区域被寻址访问或者LE的 ID被使用,都会把数据写在物理存储设备之上。

你可能会觉得奇怪,有关逻辑卷和逻辑卷组的所有元数据都存到哪儿去了。类似的在非LVM系统中,有关分区的数据是存储在分区表中,而分区表被存储在了每一个物理卷的起始位置。VGDA(卷组描述符区域)功能就好象是LVM的分区表,它存储在每一个物理卷的起始处。
VGDA由以下信息组成:
·一个PV描述符
·一个VG描述符
·LV描述符
·一些PE描述符
当系统启动LV时,VG被激活,并且VGDA被加载至内存。VGDA帮助识别LV的实际存储位置。当系统想要访问存储设备时,由VGDA建立起来的映射机制就用于访问实际的物理位置来执行I/O操作。

LVM工作原理


LVM 在每个物理卷头部都维护了一个 metadata,每个 metadata 中都包含了整个 VG 的信息,包括每个 VG 的布局配置、PV 的编号、LV 的编号,以及每个 PE 到 LE 的映射关系。同一个 VG 中的每个 PV 头部的信息是相同的,这样有利于故障时进行数据恢复。
LVM 对上层文件系统提供 LV 层,隐藏了操作细节。对文件系统而言,对 LV 的操作与原先对 Partition 的操作没有差别。当对 LV 进行写入操作时,LVM 定位相应的 LE,通过 PV 头部的映射表,将数据写入到相应的 PE 上。
LVM 实现的关键在于在 PE 和 LE 间建立映射关系,不同的映射规则决定了不同的 LVM 存储模型。LVM 支持多个 PV 的 Stripe 和 Mirror,这点和软 Raid 的实现十分相似。

LVM几个名词概念
前面谈到,LVM是在磁盘分区和文件系统之间添加的一个逻辑层,来为文件系统屏蔽下层磁盘分区布局,提供一个抽象的盘卷,在盘卷上建立文件系统。首先我们讨论以下几个LVM术语:
物理存储介质(The physical media):这里指系统的存储设备:硬盘,如:/dev/hda1、/dev/sda等等,是存储系统最低层的存储单元。
物理卷(physical volume):物理卷就是指硬盘分区或从逻辑上与磁盘分区具有同样功能的设备(如RAID),是LVM的基本存储逻辑块,但和基本的物理存储介质(如分区、磁盘等)比较,却包含有与LVM相关的管理参数。
卷组(Volume Group):LVM卷组类似于非LVM系统中的物理硬盘,其由物理卷组成。可以在卷组上创建一个或多个“LVM分区”(逻辑卷),LVM卷组由一个或多个物理卷组成。

逻辑卷(logical volume):LVM的逻辑卷类似于非LVM系统中的硬盘分区,在逻辑卷之上可以建立文件系统(比如/home或者/usr等)。

PE(physical extent):每一个物理卷被划分为称为PE(Physical Extents)的基本单元,具有唯一编号的PE是可以被LVM寻址的最小单元。PE的大小是可配置的,默认为4MB。
LE(logical extent):逻辑卷也被划分为被称为LE(Logical Extents) 的可被寻址的基本单位。在同一个卷组中,LE的大小和PE是相同的,并且一一对应。
简单来说就是:

PP,物理分区(Physical Partition),如硬盘的分区,或 RAID 分区。
PV,物理卷(Physical Volume),是 PP 的 LVM 抽象,它维护了 PP 的结构信息,是组成 VG 的基本逻辑单元,一般一个 PV 对应一个 PP。
PE,物理扩展单元(Physical Extends),每个 PV 都会以 PE 为基本单元划分。
VG,卷组(Volume Group),即 LVM 卷组,它可由一个或数个 PV 组成,相当于 LVM 的存储池。
LE,逻辑扩展单元(Logical Extends),组成 LV 的基本单元,一个 LE 对应一个 PE。

 LV,逻辑卷(Logical Volume),它建立在 VG 之上,文件系统之下,由若干个 LE 组成。

如下图所示PV、VG、LV三者关系:


系统是否选择LVM

在决定是否使用 LVM 前请先了解下 LVM 的优缺点。
使用 LVM 的优势:
文件系统可以跨多个磁盘,因此大小不会受物理磁盘的限制。
可以在系统运行状态下动态地扩展文件系统大小。
可以增加新磁盘到 LVM 的存储池中。可以以镜像的方式冗余重要数据到多个物理磁盘上。
可以很方便地导出整个卷组,并导入到另外一台机器上。
使用 LVM 的限制:
在从卷组中移除一个磁盘时必须使用 reducevg,否则会出问题。
当卷组中的一个磁盘损坏时,整个卷组都会受影响。

 不能减小文件系统大小(受文件系统类型限制)。
因为加入了额外的操作,存储性能会受影响(使用 Stripe 的情况另当别论)。
使用 LVM 将获得更好的可扩展性和可操作性,但却损失了可靠性和存储性能,总的说来就是在这两者间选择。

使用要点
 按需分配文件系统大小,不要一次性分配太大的空间给文件系统,剩余的空间可以放在存储池中,在需要时再扩充到文件系统中。
 把不同的数据放在不同的卷组中,这样在做系统升级或数据迁移操作时会比较方便。

猜你喜欢

转载自blog.csdn.net/make_zhf/article/details/73607591
LVM
今日推荐