数字图像处理-各种边缘检测算子的比较研究(1概况以及边缘检测简介)

.1 边缘检测技术概况

       计算机视觉处理可以看作是为了实现某一任务从包含有大量的不相关的信息中抽出对我们有用的信息。这就意味着要扔掉一些不必要的信息,所以我们需要尽可能利用物体的不变性质。而边缘就是最重要的不变性质:光线的变化显著地影响了一个区域的外观,但是不会改变它的边缘。最重要的是人的视觉系统也是对边缘最敏感的。边缘是图像的最基本特征。所谓边缘,是指图像中灰度发生急剧变化的区域,或者说是指周围像素灰度有阶跃变化或屋顶变化的那些像素的集合。边缘检测是图像处理中的重要内容,目的是在有噪声背景的图像中确定出目标物边界的位置。边缘或许对应着图像中物体(的边界)或许并没有对应着图像中物体(的边界),但是边缘具有十分令人满意的性质,它能大大地减少要处理的信息但是又保留了图像中物体的形状信息。

      常见的传统的边缘检测方法的边缘检测算子主要有Roberts算子、Prewitt算子、Sobel算子、Log算子、Canny算子、等。还有诸如哈夫变换等其他方法。

对图像进行边缘检测的意义很重要。在医学图像处理领域,它在图像匹配、肿瘤病灶确定、造影血管检测、冠心病诊断、左心室边缘抽出等方面占有举足轻重的地位,它还广泛用于卢脑三维重建前的边缘抽取,尘肺的自动侦测,脑灰质脑白质的抽取,各种时期癌症细胞的识别,通过眼底视网膜来诊断糖尿病等,在疾病的辅助诊断及观察治疗效果等方面起了重要作用。

      此外,边缘在模式识别、机器视觉等中有很重要的应用。边缘是边界检测的重要基础,也是外形检测的基础。边缘广泛存在于物体与背景之间、物体与物体之间、基元与基元之间,因此它也是图像分割所依赖的重要特征。边缘检测对于物体的识别也很重要的。主要有以下几个理由:首先,人眼通过追踪未知物体的轮廓而扫描一个未知的物体。第二,经验告诉人们:如果人们能成功得到图像的边缘,那么图像分析就会大大简化。图像识别就会容易得多。第三,很多图像并没有具体的物体,对这些图像的理解取决于它们的纹理性质,而提取这些纹理性质与边缘检测有着极其密切的关系。

由于在图像处理中的应用十分广泛,边缘检测的研究多年来一直受到人们的高度重视,到现在已提出的各种类型的边缘检测算法有成百上千种。到目前为止,国内外关于边缘检测的研究主要以两种方式为主:

(1)不断提出新的边缘检测算法。一方面,人们对于传统的边缘检测技术的掌握已经十分成熟,另一方面,随着科学的发展,传统的方法越来越难以满足某些情况下不断增加或更加严格的要求,如性能指标,运行速度等方面。针对这种情况,人们提出了许多新的边缘检测方法。这些新的方法大致可以分为两大类:一类是结合特定理论工具的检测技术,如基于数学形态学的检测技术、借助统计学方法的检测技术、利用神经网络的检测技术、利用模糊理论的检测技术、基于小波分析和变换的检测技术、利用信息论的检测技术、利用遗传算法的检测技术等。另一类是针对特殊的图像而提出的边缘检测方法。如将二维的空域算子扩展为三维算子可以对三维图像进行边缘检测、对彩色图像的边缘检测、合成孔径雷达图像的边缘检测、对运动图像进行边缘检测来实现对运动图像的分割等。

(2)将现有的算法应用于工程实际中。如车牌识别、虹膜识别、人脸检测、医学或商标图像检索等。

尽管人们很早就提出了边缘检测的概念,而且今年来研究成果越来越多,但由于边缘本身检测本身所具有的难度,使研究没有多大的突破性的进展。仍然存在的问题主要有两个:其一是没有一种普遍使用的检测算法;其二没有一个好的通用的检测评价标准。

从边缘检测研究的历史来看,可以看到对边缘检测的研究有几个明显的趋势:一是对原有算法的不断改进;二是新方法、新概念的引入和多种方法的有效综合利用。人们逐渐认识到现有的任何一种单独的边缘检测算法都难以从一般图像中检测到令人满意的边缘图像,因而很多人在把新方法和新概念不断的引入边缘检测领域的同时也更加重视把各种方法总和起来运用。在新出现的边缘检测算法中,基于小波变换的边缘检测算法是一种很好的方法。三是交互式检测研究的深入。由于很多场合需要对目标图像进行边缘检测分析,例如对医学图像的分析,因此需要进行交互式检测研究。事实证明。交互式检测技术有着广泛的应用。四是对特殊图像边缘检测的研究越来越得到重视。目前有很多针对立体图像、彩色图像、多光谱图像以及多视场图像分割的研究,也有对运动图像及视频图像中目标分割的研究,还有对深度图像、纹理(Texture)图像、计算机断层扫描(CT)、磁共振图、共聚焦激光扫描显微镜图像、合成孔径雷达图像等特殊图像的边缘检测技术的研究。五是对图像边缘检测评价的研究和对评价系数的研究越来越得到关注。相信随着研究的不断深入,存在的问题会很快得到圆满的解决。

边缘检测简介

1.2.1 边缘的定义及其类型的分析

边缘是指图像局部亮度变化最显著的部分,主要存在于目标与目标、目标与背景、区域与区域(包括不同色彩)之间。两个具有不同灰度值的相邻区域之间总存在着边缘,它是灰度值不连续的结果。这种不连续常可以利用求导数的方法方便的检测到,一般常用一阶和二阶导数来检测边缘。

图1.1第一排是一些具有边缘的图像示例,第二排是沿图像水平方向的一个剖面图,第三排和第四排分别为剖面的一阶和二阶导数。常见的边缘剖面有3种:①阶梯状(如图(a)和(b)所示);②脉冲状(如图(c)所示);③屋顶状(如图(d)所示)。阶梯状的边缘处于图像中两个具有不同灰度值的相邻区域之间,脉冲状主要对应细条状的灰度值突变区域,而屋顶状的边缘上升下降沿都比较缓慢。由于采样的缘故,数字图像的边缘总有一些模糊,所以这里垂直上下的边缘剖面都表示成一定坡度。

图1.1  图像的边缘及其导数

 

图1-1(a)中,对灰度值剖面的一阶导数在图像由暗变明的位置处有一个向上的阶跃,而在其它位置为零。这表明可用一阶导数的幅度值来检测边缘的存在,幅度峰值一般对应边缘位置。对灰度值剖面的二阶导数在一阶导数的阶跃上升区有一个向上的脉冲,而在一阶导数阶跃下降区有一个向下的脉冲。在这两个阶跃之间有一个过零点,它的位置正对应原始图像中边缘的位置。所以可用二阶导数过零点检测边缘位置,而二阶导数在过零点附近的符号确定边缘像素在图像边缘的暗区或明区。分析图1-1(b)可得到相似的结论。这里图像由明变暗,所以与图(a)相比,剖面左右对称,一阶导数上下对称,二阶导数左右对称。图1-1(c)中,脉冲状的剖面边缘与图(a)的一阶导数形状相同,所以图(c)的一阶导数形状与图(a)的二阶导数形状相同,而它的两个二阶导数过零点正好分别对应脉冲的上升沿和下降沿。通过检测剖面的两个二阶导数过零点就可以确定脉冲的范围。图1-1(d)中,屋顶状边缘的剖面可看作是将脉冲边缘地步展开得到的,所以它的一阶导数是将图1-1(c)脉冲剖面的一阶导数的上升沿和下降沿展开得到的,而它的二阶导数是将脉冲剖面二阶导数的上升沿和下降沿拉开得到的。通过检测屋顶状边缘剖面的一阶导数过零点可以确定屋顶位置。

猜你喜欢

转载自blog.csdn.net/iefenghao/article/details/79780821