Java多线程系列——原子类的实现(CAS算法)

  Java提供的原子类是靠 sun 基于 CAS 实现的,CAS 是一种乐观锁。关于乐观锁与悲观锁

  原子变量类相当于一种泛化的 volatile 变量,能够支持原子的和有条件的读-改-写操作。AtomicInteger 表示一个int类型的值,并提供了 get 和 set 方法,这些 Volatile 类型的int变量在读取和写入上有着相同的内存语义。它还提供了一个原子的 compareAndSet 方法(如果该方法成功执行,那么将实现与读取/写入一个 volatile 变量相同的内存效果),以及原子的添加、递增和递减等方法。AtomicInteger 表面上非常像一个扩展的 Counter 类,但在发生竞争的情况下能提供更高的可伸缩性,因为它直接利用了硬件对并发的支持。

AtomicInteger的实现

  AtomicInteger 是一个支持原子操作的 Integer 类,就是保证对 AtomicInteger 类型变量的增加和减少操作是原子性的,不会出现多个线程下的数据不一致问题。如果不使用 AtomicInteger,要实现一个按顺序获取的 ID,就必须在每次获取时进行加锁操作,以避免出现并发时获取到同样的 ID 的现象。

  接下来通过源代码来看 AtomicInteger 具体是如何实现的原子操作。

  首先看 value 的声明:

private volatile int value;

  volatile 修饰的 value 变量,保证了变量的可见性。

  incrementAndGet() 方法,下面是具体的代码:

public final int incrementAndGet() {
        for (;;) {
            int current = get();
            int next = current + 1;
            if (compareAndSet(current, next))
                return next;
        }
 }
 ```

  通过源码,可以知道,这个方法的做法为先获取到当前的 value 属性值,然后将 value1,赋值给一个局部的 next 变量,然而,这两步都是非线程安全的,但是内部有一个死循环,不断去做 compareAndSet 操作,直到成功为止,也就是修改的根本在 compareAndSet 方法里面,compareAndSet()方法的代码如下:

public final boolean compareAndSet(int expect, int update) {
return unsafe.compareAndSwapInt(this, valueOffset, expect, update);
}


  compareAndSet()方法调用的compareAndSwapInt()方法的声明如下,是一个native方法。 

public final native boolean compareAndSwapInt(Object var1, long var2, int var4, intvar5);
“`

  compareAndSet 传入的为执行方法时获取到的 value 属性值,next 为加 1 后的值, compareAndSet 所做的为调用 Sun 的 UnSafe 的 compareAndSwapInt 方法来完成,此方法为 native 方法,compareAndSwapInt 基于的是 CPU 的 CAS 指令来实现的。所以基于 CAS 的操作可认为是无阻塞的,一个线程的失败或挂起不会引起其它线程也失败或挂起。并且由于 CAS 操作是 CPU 原语,所以性能比较好。

  类似的,还有 decrementAndGet() 方法。它和 incrementAndGet() 的区别是将 value 减 1,赋值给next 变量。

  AtomicInteger 中还有 getAndIncrement() 和 getAndDecrement() 方法,他们的实现原理和上面的两个方法完全相同,区别是返回值不同,前两个方法返回的是改变之后的值,即 next。而这两个方法返回的是改变之前的值,即 current。还有很多的其他方法,就不列举了。

CAS算法

CAS(Compare-And-Swap)算法保证数据操作的原子性。

CAS 算法是硬件对于并发操作共享数据的支持。

CAS 包含了三个操作数:
  内存值 V
  预估值 A
  更新值 B

当且仅当 V == A 时,V 将被赋值为 B,否则循环着不断进行判断 V 与 A 是否相等。
什么是CAS?

CAS是英文单词Compare And Swap的缩写,翻译过来就是比较并替换。

CAS机制当中使用了3个基本操作数:内存地址V,旧的预期值A,要修改的新值B。

更新一个变量的时候,只有当变量的预期值A和内存地址V当中的实际值相同时,才会将内存地址V对应的值修改为B。

这样说或许有些抽象,我们来看一个例子:

1.在内存地址V当中,存储着值为10的变量。

2.此时线程1想要把变量的值增加1。对线程1来说,旧的预期值A=10,要修改的新值B=11。

3.在线程1要提交更新之前,另一个线程2抢先一步,把内存地址V中的变量值率先更新成了11。

4.线程1开始提交更新,首先进行A和地址V的实际值比较(Compare),发现A不等于V的实际值,提交失败。

5.线程1重新获取内存地址V的当前值,并重新计算想要修改的新值。此时对线程1来说,A=11,B=12。这个重新尝试的过程被称为自旋。

6.这一次比较幸运,没有其他线程改变地址V的值。线程1进行Compare,发现A和地址V的实际值是相等的。

7.线程1进行SWAP,把地址V的值替换为B,也就是12。

从思想上来说,Synchronized属于悲观锁,悲观地认为程序中的并发情况严重,所以严防死守。CAS属于乐观锁,乐观地认为程序中的并发情况不那么严重,所以让线程不断去尝试更新。

CAS的缺点:

1.CPU开销较大

在并发量比较高的情况下,如果许多线程反复尝试更新某一个变量,却又一直更新不成功,循环往复,会给CPU带来很大的压力。

2.不能保证代码块的原子性

CAS机制所保证的只是一个变量的原子性操作,而不能保证整个代码块的原子性。比如需要保证3个变量共同进行原子性的更新,就不得不使用Synchronized了。

3.ABA问题

这是CAS机制最大的问题所在。

什么是ABA问题?怎么解决?我们下一期来详细介绍。
转载: https://www.cnblogs.com/zhengbin/p/5657707.html

猜你喜欢

转载自blog.csdn.net/wangyuanjun008/article/details/80299348