Mysql中的 BTree 索引和 Hash 索引

       Hash 索引结构的特殊性,其检索效率非常高,索引的检索可以一次定位,不像B-Tree 索引需要从根节点到枝节点,最后才能访问到页节点这样多次的IO访问,所以 Hash 索引的查询效率要远高于 B-Tree 索引。

       可能很多人又有疑问了,既然 Hash 索引的效率要比 B-Tree 高很多,为什么大家不都用 Hash 索引而还要使用 B-Tree 索引呢?任何事物都是有两面性的,Hash 索引也一样,虽然 Hash 索引效率高,但是 Hash 索引本身由于其特殊性也带来了很多限制和弊端,主要有以下这些。

(1)Hash 索引仅仅能满足"=","IN"和"<=>"查询,不能使用范围查询。
       由于 Hash 索引比较的是进行 Hash 运算之后的 Hash 值,所以它只能用于等值的过滤,不能用于基于范围的过滤,因为经过相应的 Hash 算法处理之后的 Hash 值的大小关系,并不能保证和Hash运算前完全一样。

(2)Hash 索引无法被用来避免数据的排序操作。
       由于 Hash 索引中存放的是经过 Hash 计算之后的 Hash 值,而且Hash值的大小关系并不一定和 Hash 运算前的键值完全一样,所以数据库无法利用索引的数据来避免任何排序运算;

(3)Hash 索引不能利用部分索引键查询。
       对于组合索引,Hash 索引在计算 Hash 值的时候是组合索引键合并后再一起计算 Hash 值,而不是单独计算 Hash 值,所以通过组合索引的前面一个或几个索引键进行查询的时候,Hash 索引也无法被利用。

(4)Hash 索引在任何时候都不能避免表扫描。
       前面已经知道,Hash 索引是将索引键通过 Hash 运算之后,将 Hash运算结果的 Hash 值和所对应的行指针信息存放于一个 Hash 表中,由于不同索引键存在相同 Hash 值,所以即使取满足某个 Hash 键值的数据的记录条数,也无法从 Hash 索引中直接完成查询,还是要通过访问表中的实际数据进行相应的比较,并得到相应的结果。

(5)Hash 索引遇到大量Hash值相等的情况后性能并不一定就会比B-Tree索引高。
       对于选择性比较低的索引键,如果创建 Hash 索引,那么将会存在大量记录指针信息存于同一个 Hash 值相关联。这样要定位某一条记录时就会非常麻烦,会浪费多次表数据的访问,而造成整体性能低下

2. B-Tree索引 
      B-Tree 索引是 MySQL 数据库中使用最为频繁的索引类型,除了 Archive 存储引擎之外的其他所有的存储引擎都支持 B-Tree 索引。不仅仅在 MySQL 中是如此,实际上在其他的很多数据库管理系统中B-Tree 索引也同样是作为最主要的索引类型,这主要是因为 B-Tree 索引的存储结构在数据库的数据检 索中有非常优异的表现。 
      一般来说, MySQL 中的 B-Tree 索引的物理文件大多都是以 Balance Tree平衡二叉树 的结构来存储的,也就是所有实际需要的数据都存放于 Tree 的 Leaf Node ,而且到任何一个 Leaf Node 的最短路径的长度都是完全相同的,所以我们大家都称之为 B-Tree 索引当然,可能各种数据库(或 MySQL 的各种存储引擎)在存放自己的 B-Tree 索引的时候会对存储结构稍作改造。如 Innodb 存储引擎的 B-Tree 索引实际使用的存储结构实际上是 B+Tree ,也就是在 B-Tree 数据结构的基础上做了很小的改造,在每一个 
       Leaf Node 上面出了存放索引键的相关信息之外,还存储了指向与该 Leaf Node 相邻的后一个 LeafNode 的指针信息,这主要是为了加快检索多个相邻 Leaf Node 的效率考虑。 
      在 Innodb 存储引擎中,存在两种不同形式的索引,一种是 Cluster 形式的主键索引( Primary Key ),另外一种则是和其他存储引擎(如 MyISAM 存储引擎)存放形式基本相同的普通 B-Tree 索引,这种索引在 Innodb 存储引擎中被称为 Secondary Index 。下面我们通过图示来针对这两种索引的存放 
形式做一个比较。 

    MySQL的btree索引和hash索引的区别 

      图示中左边为 Clustered 形式存放的 Primary Key ,右侧则为普通的 B-Tree 索引。两种 Root Node 和 Branch Nodes 方面都还是完全一样的。而 Leaf Nodes 就出现差异了。在 Prim中, Leaf Nodes 存放的是表的实际数据,不仅仅包括主键字段的数据,还包括其他字段的数据据以主键值有序的排列。而 Secondary Index 则和其他普通的 B-Tree 索引没有太大的差异,Leaf Nodes 出了存放索引键 的相关信息外,还存放了 Innodb 的主键值。 

      所以,在 Innodb 中如果通过主键来访问数据效率是非常高的,而如果是通过 Secondary Index 来访问数据的话, Innodb 首先通过 Secondary Index 的相关信息,通过相应的索引键检索到 Leaf Node之后,需要再通过 Leaf Node 中存放的主键值再通过主键索引来获取相应的数据行。MyISAM 存储引擎的主键索引和非主键索引差别很小,只不过是主键索引的索引键是一个唯一且非空 的键而已。而且 MyISAM 存储引擎的索引和 Innodb 的 Secondary Index 的存储结构也基本相同,主要的区别只是 MyISAM 存储引擎在 Leaf Nodes 上面出了存放索引键信息之外,再存放能直接定位到 MyISAM 数据文件中相应的数据行的信息(如 Row Number ),但并不会存放主键的键值信息。

       可以使用btree索引的查询类型,btree索引使用用于全键值、键值范围、或者键前缀查找,其中键前缀查找只适合用于根据最左前缀的查找。前面示例中创建的多列索引对如下类型的查询有效:

A:全值匹配——全值匹配指的是和索引中的所有列进行匹配,即可用于查找姓名和出生日期

B:匹配最左前缀——如:只查找姓,即只使用索引的第一列

C:匹配列前缀——也可以只匹配某一列值的开头部分,如:匹配以J开头的姓的人,这里也只是使用了索引的第一列,且是第一列的一部分

D:匹配范围值——如查找姓在allen和barrymore之间的人,这里也只使用了索引的第一列

E:精确匹配某一列并范围匹配另外一列

如查找所有姓为allen,并且名字字母是K开头的,即,第一列last_name精确匹配,第二列first_name范围匹配

F:只访问索引的查询——btree通常可以支持只访问索引的查询,即查询只需要访问索引,而无需访问数据行,即,这个就是覆盖索引的概念。需要访问的数据直接从索引中取得。

       因为索引树中的节点是有序的,所以除了按值查找之外,索引还可以用于查询中的order by操作,一般来说,如果btree可以按照某种方式查找的值,那么也可以按照这种方式用于排序,所以,如果order by子句满足前面列出的几种查询类型,则这个索引也可以满足对应的排序需求。

下面是关于btree索引的限制:

A:如果不是按照索引的最左列开始查找的,则无法使用索引(注意,这里不是指的where条件的顺序,即where条件中,不管条件顺序,只要where中出现的列在多列索引中能够从最左开始连贯起来就能使用到多列索引)

B:不能跳过索引中的列,如:查询条件为姓和出生日期,跳过了名字列,这样,多列索引就只能使用到姓这一列

C:如果查询中有某个列的范围查询,则其右边所有列都无法使用索引优化查询,如:where last_name=xxx and first_name like ‘xxx%’ and dob=’xxx’;这样,first_name列可以使用索引,这列之后的dob列无法使用索引。

猜你喜欢

转载自blog.csdn.net/u013045878/article/details/81133789