操作系统_课程总结与积累

这是操作系统课程的平时积累

第一章 引论

操作系统的概念

操作系统是计算机系统中的一个系统软件,管理和控制计算机系统中的硬件和软件资源,合理地组织计算机的工作流程,以便有效利用这些资源为用户提供一个功能强大、使用方便的工作环境,从而在计算机与用户之间起接口的作用。

操作系统的形成与发展


  • 多道批处理系统
    • 引入多道批处理系统是为了提高系统资源利用率和系统吞吐量
  • 我比较感兴趣的一个知识点:

操作系统的进一步发展
网络操作系统:
    在通常的操作系统中增加了实现网络低层协议(一般到传送层)功能和网络设备管理功能的操作系统。如UNIX、LINUX, WINDOWS NT都是网络操作系统
分布式操作系统:
    在各处理机之间采用无主从关系来设计的操作系统,除了最低级的输入输出支援外,所有的系统任务可以在系统中任何处理机上运行。系统有高度的并行性和有效的同步方法。

资源管理角度看什么是操作系统 观点

资源管理的观点是目前对操作系统描述的主要观点,操作系统资源管理的主要功能如下:

  1. 跟踪资源状态
  2. 分配资源
  3. 回收资源
  4. 保护资源。

作业的概念以及作业包括什么

作业是用户在一次解题或一个事务处理过程中要求计算机系统所做工作的集合(一说是指用户要求计算机系统所做的工作的集合。)在个人计算机上,作业这个概念已经不存在,主要存在于巨型和大型机,引入作业是为了有效利用高性能强大的主机资源

作业的构成:它包括用户程序、所需要的数据及控制命令作业说明书等。作业是由一系列有序的作业步组成的。

设计现代OS的主要目标是什么?

答:(1)有效性 (2)方便性 (3)可扩充性 (4)开放性

OS的作用可表现在哪几个方面?

答:(1)OS作为用户与计算机硬件系统之间的接口;(2)OS作为计算机系统资源的管理者;(3)OS实现了对计算机资源的抽象。

为什么说OS实现了对计算机资源的抽象?

答:OS首先在裸机上覆盖一层I/O设备管理软件,实现了对计算机硬件操作的第一层次抽象;在第一层软件上再覆盖文件管理软件,实现了对硬件资源操作的第二层次抽象。OS 通过在计算机硬件上安装多层系统软件,增强了系统功能,隐藏了对硬件操作的细节,由它们共同实现了对计算机资源的抽象。

试说明推动多道批处理系统形成和发展的主要动力是什么?

答:主要动力来源于四个方面的社会需求与技术发展:(1)不断提高计算机资源的利用率;(2)方便用户;(3)器件的不断更新换代;(4)计算机体系结构的不断发展。

OS有哪几大特征?其最基本的特征是什么?

答:并发性、共享性、虚拟性和异步性四个基本特征;最基本的特征是并发性。

处理机管理有哪些主要功能?它们的主要任务是什么?

答:处理机管理的主要功能是:进程管理、进程同步、进程通信和处理机调度;进程管理:为作业创建进程,撤销已结束进程,控制进程在运行过程中的状态转换。进程同步:为多个进程(含线程)的运行进行协调。通信:用来实现在相互合作的进程之间的信息交换。处理机调度:(1)作业调度。从后备队里按照一定的算法,选出若干个作业,为他们分配运行所需的资源(首选是分配内存)。(2)进程调度:从进程的就绪队列中,按照一定算法选出一个进程,把处理机分配给它,并设置运行现场,使进程投入执行。

内存管理有哪些主要功能?他们的主要任务是什么?

答:内存管理的主要功能有:内存分配、内存保护、地址映射和内存扩充。内存分配:为每道程序分配内存。内存保护:确保每道用户程序都只在自己的内存空间运行,彼此互不干扰。地址映射:将地址空间的逻辑地址转换为内存空间与对应的物理地址。内存扩充:用于实现请求调用功能,置换功能等。

第二章 进程管理

进程的定义

进程是一个具有一定独立功能的程序关于某个数据集合的一次运行活动,是系统进行资源分配和调度的基本单位。

进程的结构

为了刻画进程的动态变化,通常把进程表示为由程序段、私有数据块和进程控制块(PCB)组成。进程控制块是操作系统感知进程存在的唯一标志。

PCB包含了进程的描述信息和控制信息,通常有如下项目:

(1)  标识符
(2)  存贮信息
(3)  现场状态
(4)  优先数
(5)  现场信息
(6)  链接字(或称队列指针)
(7)  族系关系
(8)  资源清单
(9)  其他

PCB的组织

为了便于管理,系统把所有的PCB用适当方式组织起来。一般说来,大致有以下三种组织方式:
- 线性表方式
- 索引方式
- 链接方式

程序并发执行时为什么会失去封闭性和可再现性?

答:程序并发执行时,多个程序共享系统中的各种资源,因而这些资源的状态由多个程序改变,致使程序运行失去了封闭性,也会导致其失去可再现性。

在操作系统中为什么要引入进程概念?它会产生什么样的影响?

答:为了使程序在多道程序环境下能并发执行,并对并发执行的程序加以控制和描述,在操作系统中引入了进程概念。影响: 使程序的并发执行得以实行。

试从动态性,并发性和独立性上比较进程和程序?

答:(1)动态性是进程最基本的特性,表现为由创建而产生,由调度而执行,因得不到资源而暂停执行,由撤销而消亡。进程有一定的生命期,而程序只是一组有序的指令集合,是静态实体。(2)并发性是进程的重要特征,同时也是OS 的重要特征。引入进程的目的正是为了使其程序能和其它进程的程序并发执行,而程序是不能并发执行的。(3)独立性是指进程实体是一个能独立运行的基本单位,也是系统中独立获得资源和独立调度的基本单位。对于未建立任何进程的程序,不能作为独立单位参加运行。

试说明PCB 的作用,为什么说PCB 是进程存在的惟一标志?

答:PCB 是进程实体的一部分,是操作系统中最重要的记录型数据结构。作用是使一个在多道程序环境下不能独立运行的程序,成为一个能独立运行的基本单位,成为能与其它进程并发执行的进程。OS是根据PCB感知到进程的存在,并通过PCB对进程进行控制和管理的,故PCB是进程存在的唯一标志。

进程在运行时存在哪两种形式的制约?并举例说明之。

答:(1)间接相互制约关系。举例:有两进程A 和B,如果A 提出打印请求,系统已把唯一的一台打印机分配给了进程B,则进程A 只能阻塞;一旦B 释放打印机,A 才由阻塞改为就绪。(2)直接相互制约关系。举例:有输入进程A 通过单缓冲向进程B 提供数据。当缓冲空时,计算进程因不能获得所需数据而阻塞,当进程A 把数据输入缓冲区后,便唤醒进程B;反之,当缓冲区已满时,进程A 因没有缓冲区放数据而阻塞,进程B 将缓冲区数据取走后便唤醒A。

为什么进程在进入临界区之前应先执行”进入区”代码?而在退出前又要执行”退出区”代码?

答:为了实现多个进程对临界资源的互斥访问,必须在临界区前面增加一段用于检查欲访问的临界资源是否正被访问的代码,如果未被访问,该进程便可进入临界区对资源进行访问,并设置正被访问标志,如果正被访问,则本进程不能进入临界区,实现这一功能的代码为”进入区”代码;在退出临界区后,必须执行”退出区”代码,用于恢复未被访问标志,使其它进程能再访问此临界资源。

如何利用信号量机制来实现多个进程对临界资源的互斥访问?并举例说明之。

答:为使多个进程互斥访问某临界资源,只需为该资源设置一互斥信号量mutex,并设其初值为1,然后将各进程访问该资源的临界区CS置于wait(mutex)和signal(mutex)操作之间即可。这样,每个欲访问该临界资源的进程在进入临界区之前,都要先对mutex 执行wait 操作,若该资源此刻未被访问,本次wait 操作必然成功,进程便可进入自己的临界区,这时若再有其他进程也欲进入自己的临界区,此时由于对mutex 执行wait操作定会失败,因而该进程阻塞,从而保证了该临界资源能被互斥访问。当访问临界资源的进程退出临界区后,应对mutex执行signal 操作,释放该临界资源。利用信号量实现进程互斥的进程描述如下:

Var mutex: semaphore:=1;
    begin
    par begin
        process 1: 
            begin
                repeat
                    wait(mutex);
                    critical section
                    signal(mutex);
                    remainder section
                until falseend
        process 2: 
            begin
                repeat
                    wait(mutex);
                    critical section
                    signal(mutex);
                    remainder section
                until falseend
    par end

在生产者消费者问题中,如果缺少了signal(full)或signal(empty),对执行结果有何影响?

答:如果缺少signal(full),那么表明从第一个生产者进程开始就没有改变信号量full 值,即使缓冲池产品已满,但full 值还是0,这样消费者进程执行wait(full)时认为缓冲池是空而取不到产品,消费者进程一直处于等待状态。如果缺少signal(empty),在生产者进程向n个缓冲区投满产品后消费者进程才开始从中取产品,这时empty=0,full=n,那么每当消费者进程取走一个产品empty 值并不改变,直到缓冲池取空了,empty 值也是0,即使目前缓冲池有n 个空缓冲区,生产者进程要想再往缓冲池中投放产品也会因为申请不到空缓冲区被阻塞。

在生产消费者问题中,如果将两个wait 操作即wait(full)和wait(mutex)互换位置,或者将signal(mutex)与signal(full)互换位置,结果如何?

答:将wait(full)和wait(mutex)互换位置后,可能引起死锁。考虑系统中缓冲区全满时,若一生产者进程先执行了wait(mutex)操作并获得成功,则当再执行wait(empty)操作时,它将因失败而进入阻塞状态,它期待消费者进程执行signal(empty)来唤醒自己,在此之前,它不可能执行signal(mutex)操作,从而使试图通过执行wait(mutex)操作而进入自己的临界区的其他生产者和所有消费者进程全部进入阻塞状态,这样容易引起系统死锁。若signal(mutex)和signal(full)互换位置后只是影响进程对临界资源的释放次序,而不会引起系统死锁,因此可以互换位置。

试修改下面生产者-消费者问题解法中的错误:

答:

producer:
    begin
        repeat
            …
            producer an item in nextp;
            wait(mutex);
            wait(full); /* 应为wait(empty),而且还应该在wait(mutex)的前面 */
            buffer(in):=nextp;
            /* 缓冲池数组游标应前移: in:=(in+1) mod n; */
            signal(mutex);
            /* signal(full); */
        until false;
    end

consumer:
    begin
        repeat
            wait(mutex);
            wait(empty); /* 应为wait(full),而且还应该在wait(mutex)的前面 */
            nextc:=buffer(out);
            out:=out+1; /* 考虑循环,应改为: out:=(out+1) mod n; */
            signal(mutex);/* signal(empty); */
            consumer item in nextc;
        until false;
    end

试利用记录型信号量写出一个不会出现死锁的哲学家进餐问题的算法.

答:

Var chopstick:array[0,…,4] of semaphore;所有信号量均被初始化为1,第i 位哲学家的活动可描述为:
    Repeat
        Wait(chopstick[i]);
        Wait(. chopstick[(i+1) mod 5]);
        …
        Ea.t ;
        …
        Signal(chopstick[i]);
        Signal(chopstick[(i+1) mod 5])
        Ea.t ;
        …
        Think;
    Until false;

在测量控制系统中的数据采集任务,把所采集的数据送一单缓冲区;计算任务从该单缓冲中取出数据进行计算.试写出利用信号量机制实现两者共享单缓冲的同步算法。

答:

a. 
Var mutex, empty, full: semaphore:=1, 1, 0;
    gather:
        begin
            repeat
                ……
                gather data in nextp;
                wait(empty);
                wait(mutex);
                buffer:=nextp;
                signal(mutex);
                signal(full);
            until false;
        end
    compute:
        begin
            repeat
                ……
                wait(full);
                wait(mutex);
                nextc:=buffer;
                signal(mutex);
                signal(empty);
                compute data in nextc;
            until false;
        end
b. 
Var empty, full: semaphore:=1, 0;
    gather:
        begin
            repeat
                ……
                gather data in nextp;
                wait(empty);
                buffer:=nextp;
                signal(full);
            until false;
        end
    compute:
        begin
            repeat
                ……
                wait(full);
                nextc:=buffer;
                signal(empty);
                compute data in nextc;
            until false;
        end

当前有哪几种高级通信机制?

答:共享存储器系统、消息传递系统以及管道通信系统。

消息队列通信机制有哪几方面的功能?

答:(1)构成消息(2)发送消息(3)接收梢息(4)互斥与同步。

为什么要在OS 中引入线程?

答:在操作系统中引入线程,则是为了减少程序在并发执行时所付出的时空开销,使OS具有更好的并发性,提高CPU的利用率。进程是分配资源的基本单位,而线程则是系统调度的基本单位。

试从调度性,并发性,拥有资源及系统开销方面对进程和线程进行比较。

答:(1)调度性。线程在OS 中作为调度和分派的基本单位,进程只作为资源拥有的基本单位。(2)并发性。进程可以并发执行,一个进程的多个线程也可并发执行。(3)拥有资源。进程始终是拥有资源的基本单位,线程只拥有运行时必不可少的资源,本身基本不拥有系统资源,但可以访问隶属进程的资源。(4)系统开销。操作系统在创建、撤消和切换进程时付出的开销显著大于线程。

为了在多线程OS 中实现进程之间的同步与通信,通常提供了哪几种同步机制?

答:同步功能可以控制程序流并访问共享数据,从而并发执行多个线程。共有四种同步模型:互斥锁、读写锁、条件变量和信号。

第三章 处理机调度与死锁

高级调度与低级调度的主要任务是什么?为什么要引入中级调度?

答:高级调度的主要任务是根据某种算法,把外存上处于后备队列中的那些作业调入内存。低级调度是保存处理机的现场信息,按某种算法先取进程,再把处理器分配给进程。引入中级调度的主要目的是为了提高内存利用率和系统吞吐量。使那些暂时不能运行的进程不再占用内存资源,将它们调至外存等待,把进程状态改为就绪驻外存状态或挂起状态。

在作业调度中应如何确定接纳多少个作业和接纳哪些作业?

答:作业调度每次接纳进入内存的作业数,取决于多道程序度。应将哪些作业从外存调入内存,取决于采用的调度算法。最简单的是先来服务调度算法,较常用的是短作业优先调度算法和基于作业优先级的调度算法。

试说明低级调度的主要功能。

答:(1)保存处理机的现场信息(2)按某种算法选取进程(3)把处理机分配给进程。

在抢占调度方式中,抢占的原则是什么?

答:抢占的原则有:时间片原则、优先权原则、短作业优先权原则等。

在选择调度方式和调度算法时,应遵循的准则是什么?

答:(1)面向用户的准则:周转时间短、响应时间快、截止时间的保证、优先权准则。(2)面向系统的准则:系统吞吐量高、处理机利用率好、各类资源的平衡利用。

何谓静态和动态优先级?确定静态优先级的依据是什么?

答:静态优先级是指在创建进程时确定且在进程的整个运行期间保持不变的优先级。动态优先级是指在创建进程时赋予的优先权,可以随进程推进或随其等待时间增加而改变的优先级,可以获得更好的调度性能。确定进程优先级的依据:进程类型、进程对资源的需求和用户要求。

试比较FCFS和SPF两种进程调度算法。

答:相同点:两种调度算法都可以用于作业调度和进程调度。
不同点:FCFS调度算法每次都从后备队列中选择一个或多个最先进入该队列的作业,将它们调入内存、分配资源、创建进程、插入到就绪队列。该算法有利于长作业/进程,不利于短作业/进程。SPF算法每次调度都从后备队列中选择一个或若干个估计运行时间最短的作业,调入内存中运行。该算法有利于短作业/进程,不利于长作业/进程。

在时间片轮转法中,应如何确定时间片的大小?

答:时间片应略大于一次典型的交互需要的时间。一般应考虑三个因素:系统对相应时间的要求、就绪队列中进程的数目和系统的处理能力。

为什么说多级反馈队列调度算法能较好地满足各方面用户的需求?

答:(1)终端型作业用户提交的作业大多属于较小的交互型作业,系统只要使这些作业在第一队列规定的时间片内完成,终端作业用户就会感到满足。
(2)短批处理作业用户,开始时像终端型作业一样,如果在第一队列中执行一个时间片段即可完成,便可获得与终端作业一样的响应时间。对于稍长作业,通常只需在第二和第三队列各执行一时间片即可完成,其周转时间仍然较短。
(3)长批处理作业,它将依次在第1,2,…,n个队列中运行,然后再按轮转方式运行,用户不必担心其作业长期得不到处理。所以,多级反馈队列调度算法能满足多用户需求。

为什么在实时系统中,要求系统(尤其是CPU)具有较强的处理能力?

答:实时系统中通常有着多个实时任务。若处理机的处理能力不够强,有可能因为处理机忙不过来而使某些实时任务得不到及时处理,导致发生难以预料的后果。

按照调度方式可将实时调度算法分为哪几种?

答:可分为非抢占式和抢占式两种算法。而非抢占式算法又分为非抢占式轮转和优先调度算法;抢占式调度算法又分为基于时钟中断的抢占式优先权和立即抢占式优先权调度算法。

何谓死锁?产生死锁的原因和必要条件是什么?

答:死锁是指多个进程在运行过程中因争夺资源而造成的一种僵局,当进程处于这种僵持状态时,若无外力作用,它们都将无法再向前推进。产生死锁的原因为竞争资源和进程间推进顺序非法。其必要条件是:互斥条件、请求和保持条件、不剥夺条件、环路等待条件。

在解决死锁问题的几个方法中,哪种方法最易于实现?哪种方法使资源利用率最高?

答:解决死锁的四种方法即预防、避免、检测和解除死锁中,预防死锁最容易实现;避免死锁使资源的利用率最高。

请详细说明可通过哪些途径预防死锁。

答:(1)摈弃”请求和保持”条件,就是如果系统有足够资源,便一次性把进程需要的所有资源分配给它;(2)摈弃”不剥夺”条件,就是已经拥有资源的进程,当它提出新资源请求而不能立即满足时,必须释放它已保持的所有资源,待以后需要时再重新申请;(3)摈弃”环路等待”条件,就是将所有资源按类型排序标号,所有进程对资源的请求必须严格按序号递增的次序提出。

第四章 存储器管理

为什么要配置层次式存储器?

答:设置多个存储器可以使存储器两端的硬件能并行工作;采用多级存储系统,特别是Cache 技术,是减轻存储器带宽对系统性能影响的最佳结构方案;在微处理机内部设置各种缓冲存储器,减轻对存储器存取的压力。增加CPU中寄存器数量大大缓解对存储器压力。

可采用哪几种方式将程序装入内存?它们分别适用于何种场合?

答: (1)绝对装入方式,只适用于单道程序环境。(2)可重定位装入方式,适用于多道程序环境。(3)动态运行时装入方式,用于多道程序环境;不允许程序运行时在内存中移位置。

分区存储管理中常用那些分配策略?比较它们的优缺点。

答:分区存储管理中的常用分配策略:首次适应算法、循环首次适应算法、最佳适应算法、最坏适应算法。
首次适应算法优缺点:保留了高址部分的大空闲区,有利于后来的大型作业分配;低址部分不断被划分,留下许多难以利用的小空闲区,每次查找都从低址开始增加了系统开销。
循环首次适应算法优缺点:内存空闲分区分布均匀,减少了查找系统开销;缺乏大空闲分区,导致不能装入大型作业。
最佳适应算法优缺点:每次分配给文件的都是最适合该文件大小的分区,内存中留下许多难以利用的小空闲区。
最坏适应算法优缺点:剩下空闲区不太小,产生碎片几率小,对中小型文件分配分区操作有利;存储器中缺乏大空闲区,对大型文件分区分配不利。

较详细的说明引入分段存储管理是为了满足用户哪几方面的需要。

答:1) 方便编程。用户通常把自己的作业按照逻辑关系划分为若干段,每段都从0 编址,并有自己名字和长度。因此,希望要访问的逻辑地址是由段名和段内偏移量决定。2) 信息共享。在实现对程序和数据的共享时,是以信息逻辑单位为基础。分页系统中的页是存放信息的物理单位,无完整意义,不便于共享;段是信息的逻辑单位。为了实现段的共享,希望存储管理能与用户程序分段的组织方式相适应。3) 信息保护。对信息的逻辑单位进行保护,分段能更有效方便地实现信息保护功能。4) 动态增长。在实际应用中,有些段特别是数据段,在使用过程中会不断增长,事先又无法确切知道增长多少。分段存储管理方式能较好解决这个问题。5) 动态链接。运行时先将主程序对应的目标程序装入内存并启动运行,运行过程中又需要
调用某段时,才将该段调入内存链接。所以动态链接也要求以段作为管理单位。

在具有快表的段页式存储管理方式中,如何实现地址变换?

答:在CPU给出有效地址后,由地址变换机构自动将页号P送入高速缓冲寄存器,并将此页号与高速缓存中的所有页号比较,若找到匹配页号,表示要访问的页表项在快表中。可直接从快表读出该页对应物理块号,送到物理地址寄存器中。如快表中没有对应页表项,则再访问内存页表,找到后,把从页表项中读出物理块号送地址寄存器;同时修改快表,将此页表项存入快表。但若寄存器已满,则OS必须找到合适的页表项换出。

为什么说为什么说分段系统比分页系统更易于实现信息的共享和保护?

答:分页系统的每个页面是分散存储的,为了实现信息共享和保护,页面之间需要一一对应,为此需要建立大量的页表项;而分段系统的每个段都从0 编址,并采用一段连续的地址空间,在实现共享和保护时,只需为要共享和保护的程序设置一个段表项,将其中的基址与内存地址一一对应就能够实现。

分段和分页存储管理有何区别?

答:(1)页是信息的物理单位,分页是为了实现离散分配方式,以消减内存的外部零头,提高内存利用率。段则是信息的逻辑单位,它含有一组相对完整的信息。(2)页的大小固定且由系统决定,由系统把逻辑地址划分为页号和页内地址两部分,是由机械硬件实现的,因而在系统中只能有一种大小的的页面;而段的长度却不固定,决定于用户所编写的程序,通常由编译程序在对原程序进行编译时,根据信息的性质来划分。(3)分页的作业地址空间是一维的,而分段作业地址空间则是二维的。

试全面比较连续分配和离散分配方式.

答:(1)连续分配是指为一个用户程序分配一个连续的地址空间,包括单一和分区两种分配方式。单一方式将内存分为系统区和用户区,最简单,只用于单用户单任务操作系统;分区方式分固定和动态分区。(2)离散分配方式分为分页、分段和段页式存储管理。分页式存储管理旨在提高内存利用率,分段式存储管理旨在满足用户(程序员)的需要,段页式存储管理则将两者结合起来,具有分段系统便于实现、可共享、易于保护和动态链接等优点,又能像分页系统很好解决外部碎片及为各段可离散分配内存等问题,是比较有效的存储管理方式;

实现虚拟存储器需要哪几个关键技术?

答:(1)在分页请求系统中是在分页的基础上,增加了请求调页功能和页面置换功能所形成的页式虚拟存储系统。允许只装入少数页面的程序(及数据),便启动运行。(2)在请求分段系统中是在分段系统的基础上,增加了请求调段及分段置换功能后形成的段式虚拟存储系统。允许只装入少数段(而非所有段)的用户程序和数据,即可启动运行。

在请求分页系统中,页表应包括哪些数据项?每项的作用是什么?

答:页表应包括:页号、物理块号、状态位P、访问字段A、修改位M和外存地址。其中状态位P 指示该页是否调入内存,供程序访问时参考;访问字段A 用于记录本页在一段时间内被访问的次数,或最近已有多长时间未被访问,提供给置换算法选择换出页面时参考;修改位M 表示该页在调入内存后是否被修改过;外存地址用于指出该页在外存上的地址,通常是物理块号,供调入该页时使用。

在请求分页系统中,常采用哪几种页面置换算法?

答:采用的页面置换算法有:最佳置换算法和先进先出置换算法,最近最久未使用(LRU)置换算法,Clock置换算法,最少使用置换算法,页面缓冲算法等。

在请求分页系统中,通常采用哪种页面分配方式?为什么?

答:固定分配方式是基于进程的类型(交互型)或根据程序员、系统管理员的建议,为每个进程分配固定页数的内存空间,整个运行期间不再改变;采用可变分配方式有全局置换和局部置换两种,前者易于实现,后者效率高。

实现LRU算法所需的硬件支持是什么?

答:需要寄存器和栈等硬件支持。寄存器用于记录某进程在内存中各页的使用情况,栈用于保存当前使用的各个页面的页面号。

试说明改进型 Clock 置换算法的基本原理.

答:因为修改过的页面在换出时付出的开销比未被修改过的页面大,在改进型Clock 算法中,既考虑页面的使用情况,还要增加置换代价的因素;在选择页面作为淘汰页面时,把同时满足未使用过和未被修改作为首选淘汰页面。

如何实现分段共享 ?

答:在每个进程的段表中,用相应的表项指向共享段在内存中起始地址;配置相应的数据结构作为共享段表,在段表项中设置共享进程计数Count ,每调用一次该共享段,Count值增 1,每当进程释放一个共享段时,Count 减1,若减为0,则系统回收该共享段的物理内存,取消在共享段表中该段对应的表项;共享段应给不同的进程以不同的存取权限;不同的进程可以使用不同的段号去共享该段。

第五章 设备管理

试说明设备控制器的组成。

答:由设备控制器与处理机的接口,设备控制器与设备的接口与I/O逻辑组成。

有哪几种I/O控制方式?各适用于何种场合?

答:共有四种I/O 控制方式。(1)程序I/O 方式:早期计算机无中断机构,处理机对I/O设备的控制采用程序I/O方式或称忙等的方式。(2)中断驱动I/O 控制方式:适用于有中断机构的计算机系统中。(3)直接存储器访问(DMA)I/O 控制方式:适用于具有DMA控制器的计算机系统中。(4)I/O 通道控制方式:具有通道程序的计算机系统中。

引入缓冲的主要原因是什么?

答:引入缓冲的主要原因是:(1)缓和CPU与I/O 设备间速度不匹配的矛盾;(2)减少对CPU的中断频率,放宽对中断响应时间的限制;(3)提高CPU与I/O 设备之间的并行性。

为何要引入设备独立性?如何实现设备独立性?

答:现代操作系统为了提高系统的可适应性和可扩展性,都实现了设备独立性或设备无关性。基本含义是应用程序独立于具体使用的物理设备,应用程序以逻辑设备名请求使用某类设备。实现了设备独立性功能可带来两方面的好处:(1)设备分配时的灵活性;(2)易于实现I/O 重定向。
为了实现设备的独立性,应引入逻辑设备和物理设备概念。在应用程序中,使用逻辑设备名请求使用某类设备;系统执行时是使用物理设备名。鉴于驱动程序是与硬件或设备紧密相关的软件,必须在驱动程序之上设置一层设备独立性软件,执行所有设备的公有操作、完成逻辑设备名到物理设备名的转换(为此应设置一张逻辑设备表)并向用户层(或文件层)软件提供统一接口,从而实现设备的独立性。

在考虑到设备的独立性时,应如何分配独占设备?

答:在考虑到设备的独立性时,应按如下步骤来分配独占设备:(1) 进程以逻辑设备名提出I/O请求。(2) 根据逻辑设备表获得I/O请求的逻辑设备对应物理设备在系统设备表中的指针。(3) 检索系统设备表,找到属于请求类型、空闲可用且分配安全设备的设备控制表,将对应设备分配给请求进程;未找到则等待等待唤醒和分配。(4) 到设备控制表中找出与其相连接的控制器的控制器控制表,根据状态字段判断是否忙碌,忙则等待;否则将该控制器分配给进程。(5) 到该控制器的控制器控制表中找出与其相连接的通道的通道控制表,判断通道是否忙碌,忙则等待;否则将该通道分配给进程。(6) 只有在设备、控制器和通道三者都分配成功时,这次的设备分配才算成功,然后便可启动设备进行数据传送。

何谓设备虚拟?实现设备虚拟时所依赖的关键技术是什么?

答:设备虚拟是指把独占设备经过某种技术处理改造成虚拟设备。可虚拟设备是指一台物理设备在采用虚拟技术后,可变成多台逻辑上的虚拟设备,则可虚拟设备是可共享的设备,将它同时分配给多个进程使用,并对这些访问该物理设备的先后次序进行控制。

设备中断处理程序通常需完成哪些工作?

答:设备中断处理程序通常需完成如下工作:(1) 唤醒被阻塞的驱动程序进程;(2) 保护被中断进程的CPU环境;(3) 分析中断原因、转入相应的设备中断处理程序;(4) 进行中断处理;(5) 恢复被中断进程。

磁盘访问时间由哪几部分组成?每部分时间应如何计算?

答:磁盘访问时间由寻道时间Ts、旋转延迟时间Tr、传输时间Tt 三部分组成。(1)Ts 是启动磁臂时间s 与磁头移动n条磁道的时间和,即Ts = m × n + s。(2)Tr是指定扇区移动到磁头下面所经历的时间。硬盘15000r/min时Tr为2ms;软盘300或600r/min时Tr为50~100ms。(3)Tt 是指数据从磁盘读出或向磁盘写入经历的时间。Tt 的大小与每次读/写的字节数b和旋转速度有关:Tt = b/rN。

目前常用的磁盘调度算法有哪几种?每种算法优先考虑的问题是什么?

答:目前常用的磁盘调度算法有先来先服务、最短寻道时间优先及扫描等算法。(1) 先来先服务算法优先考虑进程请求访问磁盘的先后次序;(2) 最短寻道时间优先算法优先考虑要求访问的磁道与当前磁头所在磁道距离是否最近;(3) 扫描算法考虑欲访问的磁道与当前磁道间的距离,更优先考虑磁头当前的移动方向。

何谓提前读、延迟写和虚拟盘

答:提前读是指在读当前盘块的同时,将下一个可能要访问的盘块数据读入缓冲区,以便需要时直接从缓冲区中读取,无需启动磁盘。延迟写是指在写盘块时,将对应缓冲区中的立即写数据暂时不立即写以备不久之后再被访问,只将它置上”延迟写”标志并挂到空闲缓冲队列的末尾。当移到空闲缓冲队首并被分配出去时,才写缓冲区中的数据。只要延迟写块仍在空闲缓冲队列中,任何要求访问都可直接从其中读出数据或将数据写入其中,而不必去访问磁盘。虚拟盘又称RAM盘,是利用内存空间仿真磁盘。其设备驱动程序可以接受所有标准的磁盘操作,但这些操作不是在磁盘上而是在内存中,因此速度更快。

第六章 文件管理

何谓数据项、记录和文件?

答:①数据项分为基本数据项和组合数据项。基本数据项描述一个对象某种属性的字符集,具有数据名、数据类型及数据值三个特性。组合数据项由若干数据项构成。②记录是一组相关数据项的集合,用于描述一个对象某方面的属性。③文件是具有文件名的一组相关信息的集合。

文件系统的模型可分为三层,试说明其每一层所包含的基本内容。

答:第一层:对象及其属性说明(文件、目录、硬盘或磁带存储空间);第二层:对对象操纵和管理的软件集合(I/O控制层即设备驱动程序、基本文件系统即物理I/O层、基本I/O管理程序或文件组织模块层、逻辑文件系统层)第三层:文件系统接口(命令接口/图形化用户接口与程序接口)。

如何提高对变长记录顺序文件的检索速度?

答:基本方法是为变长记录顺序文件建立一张索引表,以主文件中每条记录的长度及指向对应记录的指针(即该记录在逻辑地址空间的首址)作为相应表项的内容。由于索引表本身是一个定长记录的顺序文件,若将其按记录键排序,则实现了对主文件方便快捷的直接存取。如果文件较大,应通过建立分组多级索引以进一步提高检索效率。

试说明顺序文件的结构及其优点。

答:第一种是串结构:各记录之间的顺序与关键字无关。第二种是顺序结构:指文件中的所有记录按关键字(词)排列。可以按关键词长短排序或英文字母顺序排序。顺序文件的最佳应用场合是对诸记录进行批量存取时,存取效率最高;只有顺序文件才能存储在磁带上并有效工作。

在链接式文件中常用哪种链接方式?为什么?

答:链接方式分为隐式链接和显式链接两种形式。隐式链接是在文件目录的每个目录项中,都含有指向链接文件第一个盘块和最后一个盘块的指针。显式链接则把用于链接文件各物理块的指针,显式地存放在内存的一张链接表中。

为了快速访问,又易于更新,当数据为以下形式时,应选用何种文件组织方式。

⑴ 不经常更新,经常随机访问;⑵经常更新,经常按一定顺序访问;⑶经常更新,经常随机访问;
答:以上三种宜分别采用(1)顺序结构(2)索引顺序结构(3)索引结构的组织方式。

在UNIX 中,如果一个盘块的大小为1KB,每个盘块号占4个字节,即每块可放256个地址。请转换下列文件的字节偏移量为物理地址。

⑴9999; ⑵18000; ⑶420000
答:首先将逻辑文件的字节偏移量转换为逻辑块号和块内偏移量,就是将[字节偏移量]/[盘块大小],商为逻辑块号,余数是块内偏移量。在FCB中,第0-9个地址为直接地址,第10个为一次间接地址,第11个地址为二次间接地址,第12个地址为三次间接地址。再将文件的逻辑块号转换为物理块号。使用多重索引结构,在索引节点中根据逻辑块号通过直接索引或间接索引找到对应的物理块号。
(1)9999/1024=9 余783,则逻辑块号为9,直接索引第9个地址得到物理块号,块内偏移地址为783。
(2)18000/1024=17余592,则逻辑块号为10<17<10+256,通过一次间接索引在第10个地址可得到物理块号,块内偏移地址为592。
(3)420000/1024=410 余160,则逻辑块号为10+256<410,通过二次间接索引在第11个地址可得到一次间址,再由此得到二次间址,再找到物理块号,其块内偏移地址160。

什么是索引文件?为什么要引入多级索引?

答:索引文件是指当记录为可变长度时,通常为之建立一张索引表,并为每个记录设置一个表项构成的文件。通常将索引非顺序文件简称为索引文件。索引是为了是用户的访问速度更快,多级索引结构可以有效的管理索引文件,可根据用户的访问情况多级处理。

何谓事务?如何保证事务的原子性?

答:事务是用于访问和修改各种数据项的一个程序单位。要保证事务的原子性必须要求一个事务在对一批数据执行修改操作时,要么全部完成,用修改后的数据代替原来数据,要么一个也不改,保持原来数据的一致性。

引入检查点的目的是什么?引入检查点后又如何进行恢复处理?

答:引入检查点的目的是使对事务记录表中事务记录的清理工作经常化。恢复处理由恢复例程来实现。首先查找事务记录表,确定在最近检查点以前开始执行的最后的事务Ti。找到Ti后再返回搜索事务记录表,找到第一个检查点记录,从该检查点开始,返回搜索各个事务记录,利用redo和undo 过程对他们进行相应的处理。

为何引入共享锁?如何用互斥锁或共享锁来实现事务的顺序性?

答:引入共享锁是为了提高运行效率。在给对象设置了互斥锁和共享锁的情况下,如果事务Ti要对Q执行读操作,只需获得Q的共享锁。如果对象Q已被互斥锁锁住,则Ti必须等待;否则便获得共享锁对Q执行读操作。如果Ti 要对Q 执行写操作,则Ti还要获得Q的互斥锁。若失败则等待;成功则获得互斥锁并对Q执行写操作。


visitor tracker
访客追踪插件


猜你喜欢

转载自blog.csdn.net/S_gy_Zetrov/article/details/79318531